Category Archives: Drones

Development, testing, deployment, and use of drones.

Naval Aviation Week: The Conclusion

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.

By Wick Hobson

As a man who as spent entirely too much time flying in the immediate vicinity of the colloquial Death Star (and by that, I mean the aircraft carrier) over the last year, I know firsthand how forgone a conclusion naval aviation can seem. Naval aviation, as the world knows it, is a multibillion dollar power projection leviathan that literally catapults fire control solutions from mobile sovereign territory to the bad guys du jour, right? Kick the tires, light the fires; open and shut case… Or is it? From future capabilities to current funding limitations, reality is inescapably more complex.

While GCC allies transition toward hegemonic peacekeeping operations in the Middle East and posture their forces for a long term dichotomy with Iran, you can almost feel the deck of American air power at sea roll beneath your feet in new directions. Every day, the emphasis shifts incrementally away from permissive, asymmetric conflict in the Arabian Gulf and toward modern, access-denied conflict with technologically contemporary rivals. Although Operation Inherent Resolve may retain focus on surgical strikes flown overhead, our authors looked ahead to the next generation of challenges awaiting the proverbial fleet.

Speaking of ISR, how did an article summarizing the future of naval aviation go four full paragraphs without mentioning drones? Ben Ho Wan Beng arrived in time to keep my bitterness against unmanned aviation in check with a fantastic look at the rise of UAS proliferation among littoral states seeking bang for their maritime buck in his piece, “What’s the Buzz: Ship-Based Unmanned Aviation & Its Influence on Littoral Navies.”

Jon Paris gave us a taste of the war none of us want to fight in his article, “Parallax and Bullseye Buoys.” An edge-of-your-seat thriller, Jon straps you into the cockpit for an IMC, EMCON recovery onboard a lights-out carrier in hostile skies. I don’t want to live in that world, and fortunately we aren’t in that kind of extremis yet, but Jon prepares the reader for the. He articulated the complexities of navigating in GPS-denied airspace and the necessity of electromagnetic spectrum fluency for the modern A2/AD environment, an issue recently addressed by CAPT Mark Glover at C4ISR.

Meanwhile, what good is a debate on the direction of military planning without a healthy dose of fiscal reality? Bridging the well funded past to the unaffordable future, Timothy Walton gave us a sneak peek from next month’s report due from The Hudson Institute’s Center for American Seapower. He reviewed the shrinking scale of the carrier air wing by the numbers and illustrated unmistakable mission gaps created along the way. From the salad days of the Tomcats to the uncertain future of the Joint Strike Fighter, Mr. Walton illuminated the reduced footprint of the current air wing and possible ramifications facing the CSG of the future.

CDR Gregory Smith broadened the topic of integrated manned and unmanned operations with his article, “Trusting Autonomous Systems: It’s More Than Technology.” Beyond the short-term friction of terrified Djiboutian air traffic controllers, CDR Smith illustrated the essential progress required to instill the confidence required for fully integrated manned and unmanned combat operations. From C2 structures in flight to command structures in the Pentagon, the ground truth on drone warfare at sea has yet to reach IOC by any definition. CDR Smith’s article provided clear context for the way ahead.

Michael Glynn delivered the cold, hard truth on data collection efforts in Naval Aviation: if a P-8A Poseidon collects 900GB of data on a sortie with no client for the information, does it validate its R&D costs? His article, “Information Management and the Future of Naval Aviation,” provided a resounding YES while detailing the challenges facing efficient data extraction from maritime ISR operations.

Peter Marino adds international affairs into the mix by assessing the scope and implications of American technology transfer to India for the development of a powerful new carrier. Through a video review of “Making Waves: Aiding India’s Next Generation Aircraft Carrier”, he explores the unique value of naval aviation in foreign policy. 

Our selections here delve into the challenges that lay ahead. I find the common thread unifying all of our authors to be the pursuit of value to the proverbial customer in an environment defined by change. What is it, exactly, that we are creating with all of this jet fuel?

The delivery of value to the stakeholder is incumbent on any military initiative from weapons safe to weapons free. On the one hand, that means providing maritime security and intelligence collection in the absence of conflict. Our authors speak from ground truth experience on the importance of developing and maintaining a cogent strategy for the proliferation of ISR and the subsequent decoding of the data collected.

On the other hand, delivering to the stakeholder requires a conscientious investment in fire control solutions against technologically advanced adversaries in denied airspace. There is no future without U-CLASS and there is no future without the JSF; these have to be integrated into the future of naval combat at least in the intermediate term. But what good is a fire control solution without C2 assurance? Are we ready for a GPS-denied environment? What will it take for tomorrow’s navy to compete in the conflicts of the future?

Ultimately, the sting of sequestration and the pain of acquisitions make the road ahead formidable. The hardest question to answer may be the most simple. What ends are we attempting to achieve by the means of naval aviation? Once our days of busting bunkers in the Middle East with precision guided munitions no longer carry the bulk of our workload, how do we leverage the unique capabilities of naval aviation across the entire spectrum of the rules of engagement to provide value to the theater commander?

It’s an exciting time to be a part of naval aviation. With such seismic shifts in sensor capabilities, adversary technological acumen, and A2/AD threat proliferation cast against cutthroat funding and acquisitions, this is not a sport for the faint of heart. Vision, flexibility, and creativity will define the success or failure of our transition to the next war we fight. Please join me in congratulating our authors on a job well done for their contribution to the next step, and feel free to join the discussion with your own feedback at!

LT W. W. Hobson is an MH-60R pilot. The views expressed in this article are entirely his own and are not endorsed by the US Navy.

Trusting Autonomous Systems: It’s more than technology

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.

By CDR Greg Smith

How will naval aviation employ unmanned aerial vehicles (UAVs) in the future?   The answer is, of course, “it depends.”  It depends on technology, on the economy and budgets, on whether we are at war or peace, on leadership.  It also depends on less interesting things like how squadrons and air wings are organized.  Given the rapid advances in unmanned systems technology and the success of unmanned platforms like Predator and BAMS-D,[1] UAVs will certainly proliferate and significantly impact the future of naval aviation.  If properly integrated, future manned-unmanned teams could deliver exponential increases in combat power, but integration of unmanned aircraft requires a level of trust in autonomous systems that does not yet exist in naval aviation.   Building trust will require technical improvements that increase the “trustworthiness” of UAVs, but it will also require naval aviation to establish organizations that enhance trust in UAVs with the goal of fully integrating them into the fight.   Indeed, organization will likely be the limiting factor with regard to the pace of integrating trusted UAVs.   Therefore, naval aviation should consider the impact organization will have on the ability of aviators to trust UAVs and balance this among the competing requirements for introducing new unmanned platforms.

The Issue is Trust

Although naval aviators are perceived as natural risk-takers, they are trained to take no unnecessary risk and to mitigate risk throughout every evolution.  Therefore, UAV integration will occur only when aviators trust UAVs to the same extent that they trust another aviator flying in close proximity as part of a strike package or during coordinated antisubmarine warfare sorties today. 

The proliferation and success of UAVs in the past decade belies the fact that aviators still do not trust them.  The vast majority of unmanned aircraft continue to fly only scheduled sorties in pre-established air space in order to ensure separation from manned aircraft.  In addition, naval aviators operate with an abundance of caution around UAVs.  Aircrews are briefed on planned UAV routes and orbits prior to a mission and routinely deviate from airspace assignments or coordinate new air space in flight to ensure safe separation from UAVs.    Being notified that an operator has lost communications with a nearby UAV (i.e. it is autonomously executing a pre-programmed reacquisition profile) assists manned aircraft, but it also raises the hair on the back of an aviator’s neck.   In the terminal area it becomes necessary to fly closer to UAVs, which is accomplished safely with the assistance of ground air traffic controllers.  Still, as with any congestion, the threat to manned aircraft increases, especially in expeditionary locations. After several, near mid-air collisions with UAVs in 2010, one task force commander grounded his manned aircraft at a remote operating location until he was assured that the local control tower and UAV operators, who were physically located half-way around the world, would improve procedural compliance.  Anecdotes like these abound, demonstrating both the adaptability and skepticism of aviators flying near UAVs.  After nearly a decade of sharing the sky with UAVs, most naval aviators no longer believe that UAVs are trying to kill them, but one should not confuse this sentiment with trusting the platform, technology, or operators. 

Building trust in autonomous systems should be a goal of those who will design the UAVs of the future as well as those who will employ them in the Fleet, because establishing trust in autonomous systems may be the tipping point that will unleash the revolutionary combat potential of UAVs.   Naval aviation could fully integrate trusted UAVs into every mission area of every community.  Unmanned tankers, wingmen (wingbots?), jammers, decoys, missile trucks, minesweepers, and communications relays could be launched from the decks of aircraft carriers, destroyers, support ships, from bases ashore, or from aircraft cargo bays, wing pylons and bomb bay stations in the coming decades, truly revolutionizing naval aviation.  However, lack of trust is a critical obstacle which must be overcome before such a proliferation of UAVs can occur.

There are several technological improvements that can contribute to trust by enhancing situational awareness and safety of both manned and unmanned platforms.  Improvements in see-and-avoid technology are needed to assist UAV operators when the UAV is flying in proximity of manned platforms.  UAV command and control architectures and traffic collision avoidance systems (TCAS), as well as radars and data links, require improved reliability, security, and flexibility to ensure survivability in an anti-access environment or in the face of cyber or space attacks.  Systems that provide manned platforms with increased situational awareness regarding the location of UAVs and the intended flight profile would also enhance trustworthiness of UAVs.  Today, the vast majority of naval aviation is not comfortable sharing an altitude block with a UAV in day, visual meteorological conditions (VMC), much less during war at sea in an anti-access environment.  Technological improvements that make UAVs more trustworthy are necessary but not sufficient for establishing trust between an aviator and a machine.  Sufficient trust will also require training, mission experience, and technical understanding of the system. 

Organization matters

Given the technological enhancements described above, it is not a stretch to imagine a manned F-35 establishing a CAP station with a UAV wingman, or a P-8 crew employing UAVs or unmanned undersea vehicles (UUVs) to search for a submarine, or an E-2D using a UAV to extend the range of its radar or data link, or an EA-18G commanding a UAV to jam air defenses or deliver an electromagnetic pulse. There remain challenges to fielding these capabilities, but the technology will soon exist to safely integrate UAVs into these naval aviation missions and many more.  This level of integration raises numerous questions about UAV organizations and their personnel. 

Who would be responsible for the success, failure, and safety of the missions? Would each community operate UAVs that support its mission or would a UAV community operate all UAVs performing the full spectrum of naval aviation missions? How would a UAV operator develop the expertise to execute complex tactical tasks in close coordination with manned platforms? What tactical and technical training will be required to integrate UAVs in this manner? How are the skills of pilots and UAV operators similar? How are they different? What portions of the unmanned sorties are accomplished autonomously and which require a link with a UAV operator?  From where will UAVs launch and recover? From where will they be controlled and who will control them?

The answers to these questions depend on how squadrons of the future will be organized to command, operate and maintain the UAVs.  In turn, each organizational model significantly influences the amount of additional training, coordination, and experience required to achieve the trust necessary to fully integrate UAVs.   Consider the issue of who controls the UAVs.  Some options include: control by the pilot of a manned aircraft herself; control by another aviator in the same aircraft or section; control by an aviator from the same naval aviation community outside the section; control by a UAV operator from a UAV community — aboard ship, ashore, or airborne; and fully autonomous operation.   The amount of trust required to execute complex missions in close proximity to UAVs is the same regardless of how the UAV is controlled, but the amount of trust inherent in each scenario varies greatly.   Decisions about these elements will significantly influence how quickly aviators will be able to trust, and therefore integrate, UAVs.   As technology overcomes the challenges posed by the various capabilities implied above, organizational structures will determine how quickly UAVs can be integrated into the fight.

Beyond U-CLASS

Naval aviation’s plans for its next UAV, the Unmanned Carrier Launched Airborne Surveillance System (U-CLASS), will prudently focus on ensuring the safe introduction of a novel platform in a budget constrained environment.   Yet, looking beyond U-CLASS, there is the potential for naval aviation to exponentially increase its combat effectiveness by integrating UAVs in every mission area.  Technological innovation is necessary to make UAVs more trustworthy, but naval aviation should also understand how organization will facilitate or impede the integration of trusted UAVs.  The optimal structure of future UAV units will maximize trust between manned and unmanned platforms and allow for innovation and growth in integration. 

Commander Smith is a Naval Flight Officer and the former Commanding Officer of VP-26.  These are his views and do not reflect the views of the United States Navy.

This article featured as a part of CIMSEC’s September 2015 topic week, The Future of Naval Aviation. You can access the topic week’s articles here

What’s the buzz? Ship-based unmanned aviation and its influence on littoral navies during combat operations

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.

By Ben Ho Wan Beng


 “Unmanned aviation” has been a buzzword in the airpower community during recent years with the growing prevalence of unmanned systems to complement and in some cases replace peopled ones in key roles like intelligence, surveillance and reconnaissance (ISR). Insofar as unmanned aerial vehicles (UAVs) are increasingly used for strike, their dominant mission is still ISR because of the fledging state of pilotless technology. This is especially the case for sea-based drones, which are generally less capable than their brethren ashore. That said, several littoral navies have jumped on the shipborne UAV bandwagon owing to its relative utility and cost-effectiveness.[1] And with access to such platforms, how would these entities be effected during combat?

For littoral nations without an aerial maritime ISR capability in the form of maritime patrol aircraft (or only having a limited MPA capability), the sea-based drone can make up for this lacuna and improve battlespace/domain awareness. On the other hand, for littoral nations with a decent maritime ISR capability, the shipborne UAV can still play a valuable, albeit, complementary role. The naval drone also offers the prospect of coastal forces amassing more lethality as it refines the target-acquisition process, enabling its mother ship to attack the adversary more accurately.

 The littoral combat environment

 Littoral operations are likely to be highly complex affairs. As esteemed naval commentator Geoffrey Till said: “The littoral is a congested place, full of neutral and allied shipping, oil-rigs, buoys, coastline clutter, islands, reefs and shallows, and complicated underwater profiles.”[2] One key reason behind the labyrinthine nature of littoral warfare is that it involves clutter not only at sea, but also on land and in the air. Especially troublesome is the presence of numerous ships in the littorals. To illustrate, almost 78,000 ships transited the Malacca Strait, one of the world’s busiest waterways, in 2013.[3]

Such a complex operating milieu would place a premium on the importance of battlespace awareness, which could make or break a campaign. As fabled ancient Chinese military philosopher Sun Tzu asserted: “With advance information, costly mistakes can be avoided, destruction averted, and the way to lasting victory made clear.” This statement was made over 2,000 years ago and is still as relevant as before today, especially when considered against the intricacies of littoral combat that hinders sensor usage. Indeed, shipborne radar performance during littoral operations can be significantly degraded by land clutter. For instance, the 1982 Falklands conflict manifested the problems sea-based sensors had in detecting and identifying low-flying aircraft with land clutter in the background.[4] Campaigning in congested coastal waters would also necessitate the detection and identification of hostile units in the midst of numerous other sea craft, which is by no means an easy task. All in all, the clutter common to littoral operations presents a confusing tactical picture to naval commanders, and the side with a better view of the situation ­– read greater battlespace awareness – would have a distinct edge over its adversary. Sea-based UAVs can provide multispectral disambiguation of threat contacts from commercial shipping by virtue of onboard sensor suites, yielding enhanced situational awareness to the warfare commander.

Improved battlespace awareness         

Traditional manned maritime patrol aircraft (MPA) would be the platform of choice to perform maritime ISR that helps in raising battlespace awareness in a littoral campaign. However, not all coastal states own such assets, which can be relatively expensive[5], or have enough of them to maintain a persistent ISR over the battlespace, a condition critical to the outcome of a littoral operation. This is where the sea-based drone would come in handy. Unmanned aviation has a distinct advantage over its manned equivalent, as UAVs can stay airborne much longer than piloted aircraft. To illustrate, the ScanEagle naval drone, which is in service with littoral navies such as Singapore and Tunisia and commonly used for ISR, can remain on station for some 28 hours.[6] In stark contrast, the corresponding figure for the P-3 Orion MPA is 14.[7] The sensor capabilities of some of the naval drones currently in service also make them credible aerial maritime ISR platforms. Indeed, they are equipped with such sophisticated sensor technologies as electro-optical, infrared and synthetic aperture radar (SAR) systems.

To be sure, the shipborne UAV is incomparable to the MPA vis-à-vis most performance attributes, and the two platforms definitely cannot be used interchangeably. The utility of the naval drone lies in the fact that it can complement the MPA by taking over some of the latter’s routine, less demanding surveillance duties. This would then free up the MPA to concentrate on other, more combat-intensive missions during a littoral campaign, such as attacking enemy ships. And for a littoral nation without MPAs, the shipborne UAV would be especially valuable as it can perform aerial ISR duties for a prolonged period.

The naval drone can contribute to information dominance in another way. In combat involving two littoral navies, the side with organic airpower tends to have better domain awareness over the other, ceteris paribus. However rudimentary it may be, the shipborne drone constitutes a form of organic sea-based airpower that extends the “eyes” of its mother platform. The curvature of Earth limits the range of surface radars, but having an “eye in the sky” circumvents this and improves coverage significantly. Being able to “see” from altitude allows one to attain the naval equivalent of “high ground,” that key advantage so prized by land-based  forces. Indeed, the ScanEagle can operate at an altitude of almost 5,000 meters (m).[8] In the same vein, the Picador unmanned helicopter has a not inconsiderable service ceiling of over 3,600m.[9] In essence, the UAV allows its mother ship to detect threats that the latter would generally be unable to using its own sensors.

All in all, shipborne drones enable littoral fleets to have a clearer tactical picture, translating to improved survivability by virtue of the greater cognizance of emerging threats that they offer to surface platforms. Having greater battlespace awareness also means that the naval force in question would be in a superior position to dish out punishment on its adversary.

Increased lethality

 Sea-based UAVs would enable a littoral navy to target the opposing side more accurately as they can carry out target acquisition, hence increasing their side’s lethality. In this sense, the drone is reprising the role carried out by floatplanes deployed on battleships and cruisers in World War Two. During that conflict, these catapult-launched aircraft acted as spotters by directing fire for their mother ships during surface engagements. In more recent times, during Operation Desert Storm, Pioneer UAVs from the American battlewagon Wisconsin guided gunfire for their mother ship. Several current UAVs can fulfill this role. For instance, the Eagle Eye can be used as a guidance system for naval gunfire; ditto the Picador with its target-acquisition capabilities. There is also talk of drones carrying out over-the-horizon targeting so as to facilitate anti-ship missile strikes from the mother platforms.[10]

And though land-based UAVs are increasingly taking up strike missions, the same cannot be said for their sea-based counterparts as very few of the latter are even in service today in the first place, due to their complexity and cost. The Fire Scout is one such armed naval UAV. This United States Navy rotorcraft can be armed with guided rockets and Hellfire air-to-surface missiles; however, with a unit cost of US$15-24 million[11], it is not a low-end platform. All in all, unarmed shipborne drones are likely to be the order of the day for littoral navies, at least in the near term, and such platforms can only carry out what they have been doing all this while, like ISR and target acquisition.


 In summary, the sea-based drone can, to some extent, complement the maritime patrol aircraft in the aerial ISR portfolio at sea, helping to maintain the battlespace awareness of the littoral navy during a conflict. The naval UAV’s target-acquisition capability also means that it can improve its owner’s striking power to some extent. These statements, however, must be qualified as current shipborne drones can only operate in low-threat environments – in contested airspace, their survivability and viability would be severely jeopardized, as they are simply unable to evade enemy fighters and anti-aircraft fire. In the final analysis, it can perhaps be maintained that the rise of sea-based UAVs constitutes incremental progress for littoral navies, as the platform does not offer game-changing capabilities to these entities.

Going forward, ISR is likely to remain the main mission for sea-based drones in the near future. Though the armed variant seems to offer a breakthrough in this state of affairs, it must be stressed that it is neither a simple nor cheap undertaking. If and when defense industrial players were to provide lower-cost solutions to this issue in the future, however, the striking power of coastal fleets would increase considerably and with that, the nature of littoral and for that matter naval warfare in general would profoundly change. Until then, the sea UAV-littoral navy nexus would be characterized by evolution, not revolution.

Ben Ho Wan Beng is a Senior Analyst with the Military Studies Programme at the S. Rajaratnam School of International Studies in Singapore; he received his master’s degree in strategic studies from the same institute. The ideas expressed above are his alone. He would also like to express his heartfelt gratitude to colleague Chang Jun Yan for his insightful comments on a draft of this article.

This article featured as a part of CIMSEC’s September 2015 topic week, The Future of Naval Aviation. You can access the topic week’s articles here


[1] For instance, the Scan Eagle drone has a unit cost of $100,000. See

[2] Geoffrey Till, Seapower: A Guide for the Twenty-first Century (London: Routledge, 2013), 268.

[3] Marcus Hand, “Malacca Straits transits hit all-time high in 2013, pass 2008 peak,” Seatrade Maritime News, February 10, 2014, accessed September 4, 2015,

[4] Milan Vego, “On Littoral Warfare,” Naval War College Review 68, No. 2 (Spring 2015): 41.

[5] Some of the more common MPAs include the P-3 Orion, which is in service with nations like New Zealand and Thailand which has a unit cost of US$36 million, according to the U.S. Navy. See

[6] “ScanEagle, United States of America,”, accessed September 5, 2015,

[7] “P-3C Orion Maritime Patrol Aircraft, Canada,”, accessed September 5, 2015,

[8] “ScanEagle, United States of America.”

[9] “Picador, Israel,”, accessed September 5, 2015,

[10] Martin Van Creveld, The Age of Airpower (New York: Public Affairs, 2012), 274.

[11] United States Government Accountability Office, Defense Acquisitions: Assessment of Selected Weapons Program, March 2015, 117.

Operating in an Era of Persistent Unmanned Aerial Surveillance

By William Selby

In the year 2000, the United States military used Unmanned Aerial Systems (UASs) strictly for surveillance purposes and the global commercial UAS market was nascent. Today, the combination of countries exporting complex UAS technologies and an expanding commercial UAS market advances the spread of UAS technologies outside of U.S. government control. The propagation of this technology from both the commercial and military sectors will increase the risk of sophisticated UASs becoming available to any individual or group, regardless of their intent or financial resources. Current and future adversaries, including non-state actors, are likely to acquire and integrate UASs into their operations against U.S. forces. However, U.S. forces can reduce the advantages of abundant UAS capability by limiting the massing of resources and by conducting distributed operations with smaller maneuver elements.

Leveraging the Growth in the Commercial UAS Market

While armed UAS operations are only associated with the U.S., UK, and Israel, other countries with less restrictive export controls are independently developing their own armed UAS systems. Chinese companies continue to develop reconnaissance and armed UASs for export to emerging foreign markets. Earlier this year, social media reports identified a Chinese CH-3 after it crashed in Nigeria. Reports indicate China sold the system to the Nigerian government for use against Boko Haram. Other countries including Pakistan and Iran organically developed armed UAS capabilities, with claims of varying levels of credibility. In an effort to capitalize on the international UAS market and to build relationships with allies, the U.S. eased UAS export restrictions in early 2015 while announcing the sale of armed UASs to the Netherlands. Military UAS development is expected to be relatively limited, with less than 0.5 percent of expected future global defense spending slated to buying or developing military drones. For now, long range surveillance and attack UASs are likely to remain restricted to the few wealthy and technologically advanced countries that can afford the research costs, training, and logistical support associated with such systems. However, short range military or civilian UASs are likely to be acquired by non-state actors primarily for surveillance purposes.

Still captured from an ISIS documentary with footage shot from a UAS over the Iraqi city of Fallujah(

Still captured from an ISIS documentary with footage shot from a UAS over the Iraqi city of Fallujah(

Hamas, Hezbollah, Libyan militants, and ISIS are reportedly using commercial UASs to provide surveillance support for their military operations. Current models contain onboard GPS receivers for autonomous navigation and a video transmission or recording system that allows the operators to collect live video for a few thousand dollars or less. Small UASs, similar in size to the U.S. military’s Group 1 UASs, appeal to non-state actors for several reasons. Namely, they are inexpensive to acquire, can be easily purchased in the civilian market, and are simple to maintain. Some systems can be operated with very little assembly or training, which reduces the need for substantial technical knowledge and enables non-state actors to immediately integrate them into daily operations. These UASs are capable of targeting restricted areas as evidenced by the recent UAS activity near the White House, French nuclear power plants, and the Japanese Prime Minister’s roof. The small size and agility of these UASs allow them to evade traditional air defense systems yet specific counter UAS systems are beginning to show progress beyond the prototype phase.

Economic forecasters may dispute commercial UAS sales predictions, but most agree that this market is likely to see larger growth than the military market. Countries are currently attempting to attract emerging UAS businesses by developing UAS regulations that will integrate commercial UASs into their national airspace. The increase of hobby and commercial UAS use is likely to lead to significant investments in both hardware and software for these systems. Ultimately, this will result in a wider number of platforms with an increased number of capabilities available for purchase at a lower cost. Future systems are expected to come with obstacle avoidance systems, a wider variety of modular payloads, and extensive training support systems provided by a growing user community. Hybrid systems will address the payload, range, and endurance limitations of the current platforms by combining aspects of rotor and fixed wing aerial vehicles. The dual-use nature of these commercial systems will continue to be an issue. Google and Amazon are researching package delivery systems that can potentially be repurposed to carry hazardous materials. Thermal, infrared, and multispectral cameras used for precision agriculture can also provide non-state actors night-time surveillance and the ability to peer through limited camouflage. However, non-state actors will likely primarily use hobby and commercial grade platforms in an aerial surveillance role, since current payload limitations prevent the platforms from carrying a significant amount of hazardous material. 

Minimizing the Advantages of Non-State Actor’s UAS Surveillance

As these systems proliferate, even the most resource-limited adversaries are expected to have access to an aerial surveillance platform. Therefore, friendly operations must adapt in an environment of perceived ubiquitous surveillance. Despite the limited range and endurance of these small UASs, they are difficult to detect and track reliably. Therefore, one must assume the adversary is operating these systems if reporting indicates they possess them. Force protection measures and tactical level concepts of operations can be modified to limit the advantages of ever-present and multi-dimensional surveillance by the adversary. At the tactical level, utilizing smoke and terrain to mask movement and the use of camouflage nets or vegetation for concealment can be effective countermeasures. The principles of deception, stealth, and ambiguity will take on increasing importance as achieving any element of surprise will become far more difficult. 

The upcoming 3DR Solo UAS will feature autonomous flight and camera control with real time video streaming for $1,000 (
The upcoming 3DR Solo UAS will feature autonomous flight and camera control with real time video streaming for $1,000 (

At static locations such as forward operating bases or patrol bases, a high frequency of operations, including deception operations, can saturate the adversary’s intelligence collection and processing capabilities and disguise the intent of friendly movements. Additionally, massing strategic resources at static locations will incur increasing risk. In 2007 for example, insurgents used Google Earth imagery of British bases in Basra to improve the accuracy of mortar fire. The adversary will now have near real time geo-referenced video available which can be combined with GPS guided rockets, artillery, mortars and missiles to conduct rapid and accurate attacks. These attacks can be conducted with limited planning and resources, yet produce results similar to the 2012 attack at Camp Bastion which caused over $100 million in damages and resulted in the combat ineffectiveness of the AV-8B squadron.

In environments without the need for an enduring ground presence, distributed operations with smaller maneuver elements will reduce the chance of strategic losses while concurrently making it harder for the adversary to identify and track friendly forces. Interestingly, operational concepts developed by several of the services to assure access in the face of sophisticated anti-access/area denial threats can also minimalize the impact of the UAS surveillance capabilities of non-state actors. The Navy has the Distributed Lethality concept, the Air Force is testing the Rapid Raptor concept, and the Army’s is developing its Pacific Pathways concept. The Marine Corps is implementing its response, Expeditionary Force 21 (EF21), through several Special Purpose Marine Air Ground Task Forces.

The EF21 concept focuses on using high-speed aerial transport, such as the MV-22, to conduct dispersed operations with Company Landing Teams that are self-sufficient for up to a week.  In December 2013, 160 Marines flew over 3,400 miles in KC-130s and MV-22s from their base in Spain to Uganda in order to support the embassy evacuation in South Sudan, demonstrating the EF21 concept. Utilizing high speed and long-range transport allows friendly forces to stage outside of the adversary’s ground and aerial surveillance range. This prevents the adversary from observing any patterns that could allude to the mission of the friendly force and also limits exposure to UAS surveillance. Advances in digital communications, including VTCs and mesh-networks, can reduce the footprint of the command center making these smaller forces more flexible without reducing capabilities. The small size of these units also reduces their observable signatures and limits the ability of the adversary to target massed forces and resources.

Confronting the Approaching UAS Free-Rider Dilemma

Non-state actors capitalize on the ability to rapidly acquire and implement sophisticated technologies without having to invest directly in their development. These organizations did not pay to develop the Internet or reconnaissance satellites, yet they have Internet access to high-resolution images of the entire globe. It took years for the U.S. to develop the ability to live stream video from the Predator UAS but now anyone can purchase a hobby UAS that comes with the ability to live stream HD video to YouTube for immediate world-wide distribution. As the commercial market expands, so will the capabilities of these small UAS systems, democratizing UAS technology. Systems that cannot easily be imported, such as advanced communications relays, robust training pipelines, and sophisticated logistics infrastructure can now be automated and outsourced. This process will erode the air dominance that the U.S. enjoyed since WWII, now that commercial investments allow near peers to acquire key UAS technologies that approach U.S. UAS capabilities.

The next generation of advanced fighters may be the sophisticated unmanned vehicles envisioned by Navy Secretary Ray Maybus. However, other countries could choose a different route by sacrificing survivability for cheaper, smaller, and smarter UAS swarms that will directly benefit from commercial UAS investments. Regardless of the strategic direction military UASs take, commercial and hobby systems operating in an aerial surveillance role will remain an inexpensive force multiplier for non-state actors. Fortunately, the strategic concepts developed and implemented by the services to counter the proliferation of advanced anti-air and coastal defense systems can be leveraged to minimalize the impact of unmanned aerial surveillance by the adversary. Distributed operations limit the massing of resources vulnerable to UAS assisted targeting while long-range insertions of small maneuver elements reduces the exposure of friendly forces to UAS surveillance. Nation states and non-state actors will continue to benefit from technological advances without investing resources in their development, pushing U.S. forces to continually update operational concepts to limit the increasing capabilities of the adversary.

William Selby is a Marine officer who completed studies at the US Naval Academy and MIT researching robotics and unmanned systems. He previously served with 2nd Battalion, 9th Marines and is currently stationed in Washington, DC. Follow him @wilselby or 

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.