Category Archives: Drones

Development, testing, deployment, and use of drones.

Operation Eminent Shield: The Advent of Unmanned Distributed Maritime Operations

Read Part One on the Battle of Locust Point. Read Part Two on the Nanxun Jiao Crisis.

By David Strachan


TOP SECRET/NOFORN

The following classified interview is being conducted per the joint NHHC/USNI Oral History Project on Autonomous Warfare.

Admiral Jeremy B. Lacy, USN (Ret.)

December 3, 2033

Annapolis, Maryland

Interviewer: Lt. Cmdr. Hailey J. Dowd, USN

Good morning.

We are joined again today by Admiral Jeremy B. Lacy, widely considered the father of autonomous undersea conflict, or what has come to be known as micronaval warfare. Admiral Lacy spearheaded the Atom-class microsubmarine program, eventually going on to establish Strikepod Group 1 (COMPODGRU 1), and serving as Commander, Strikepod Forces, Atlantic (COMPODLANT), as well as Commander, Strikepod Command (SPODCOM). He is currently the Corbin A. McNeill Endowed Chair in Naval Engineering at the U.S. Naval Academy.

This is the third installment of a planned eight-part classified oral history focusing on Admiral Lacy’s distinguished naval career, and his profound impact on modern naval warfare. In Part II, we learned of the aftermath of the Battle of Locust Point, and how continued Russian micronaval advances, most notably the nuclear-armed Poseidon UUV, led to the development of AUDEN, the Atlantic Undersea Defense Network. We also learned of CYAN, a “walk-in” CIA agent who revealed Chinese penetration of the AUDEN program, and the resulting emplacement of numerous AUDEN-like Shāyú microsubmarine turrets throughout the South China Sea. One of these turrets, at Gaven Reefs, known to the Chinese as Nanxun Jiao, was directly involved in engaging the USS Decatur, and was subsequently the target of an undersea strike which resulted in the deaths of four Chinese nationals, including CYAN himself.

The Nanxun Jiao Crisis was a wakeup call for the United States. With Chinese militarization of the South China Sea expanding to the seabed, a new sense of urgency now permeated the U.S. national security establishment. Pressure was mounting to counter China’s increasing belligerence and expansionist agenda, but doing so risked igniting a regional conflict, or a confrontation between nuclear-armed adversaries.

We joined Admiral Lacy again at his home in Annapolis, Maryland.


 

Let’s begin with the immediate aftermath of Operation Roundhouse. How impacted was Strikepod Command by the events of that day?

It was devastating. Unimaginable, really. That we’d had a hand, however unwittingly, in the murder of four people, and watched it unfold in real time right before our eyes – you can’t prepare for something like that. They brought in counselors from Langley [Air Force Base] – chaplains, experienced drone pilots who’d been through this kind of thing. But for a lot of talented people it just wasn’t enough, and they had to call it a day.

For those who remained the trauma eventually gave way to anger, and then determination. But the feeling of betrayal, of vulnerability, was difficult to overcome. All we could do was move on as best we could.

The CYAN investigation would eventually yield a single spy – Charles Alan Ordway , a FathomWorks contractor motivated apparently by personal financial gain. But you weren’t convinced that was the end of it.

Ordway worked on AUDEN, but he didn’t have code word clearance, so while it was true that he had passed sensitive information to the Chinese, there was really no way for him to have known of Roundhouse or CYAN. From a counterintelligence perspective, he was low hanging fruit, and I believed – and continue to believe to this day – that there was someone else.

The intelligence provided by CYAN led to the discovery of several operational Shāyú installations in addition to Nanxun Jiao. What was the reaction in policy circles?

Alarm bells were going off throughout Washington, and we were under extraordinary pressure not only to process the raw intelligence, but to understand the broader implications of China’s growing micronaval capability, particularly as it applied to gray zone operations. It was quite clear now that strategic ambiguity was no longer appropriate, and if policymakers were waiting for a reason to act, it seemed Nanxun Jiao was it.

And yet, apparently it still wasn’t.

No. The president felt that while the Shāyú emplacements represented a concerning development in the South China Sea, there was little difference between seabed microsubmarine turrets and onshore ASCM batteries. Keep in mind, it was also an election year, a time when politicians generally avoid starting wars. And there was additional concern that any escalation in the South China Sea would have an adverse impact on the restarted negotiations with North Korea.

So we were in a holding pattern, a period of strategic paralysis, really. No additional strikes were authorized, or even under consideration. We’d sent a message with Roundhouse, and the Chinese answer was continued harassment and militarization. They were dug in and practically daring us to escalate. And with neither side willing or able to consider a diplomatic solution, the tension was left to fester.

Let’s come back to that, if we could, and talk a bit about developments at FathomWorks. The Atom-class was proving to be a phenomenally successful platform, and you were now being called upon to replicate that success in another domain.

Once the dust had settled I got a call from Chandra [Reddy, the ONR Atom-class liaison] who wanted to chat about Falken [the Atom-class artificial intelligence], and specifically whether I thought it could be adapted to an unmanned surface vehicle. We got to talking, and he says you know what, Jay, there’s someone you should meet. Next day, I’m off to Olney [Maryland] with Max [Keller, Director of AI for the Atom-class] to meet with Talia Nassi.

Was that name familiar to you?

She was three years behind me at the Academy, and our paths had crossed a couple times over the years at conferences and training sessions. She was pretty outspoken and wasn’t afraid of ruffling a few feathers, especially when it came to unmanned systems and what was then being called DMO, or distributed maritime operations. Like everyone else, though, I knew her as the maverick commander who’d taken early retirement to start Nassi Marine.

But you had no idea she was behind the Esquire-class?

I had no idea that such a program even existed. It was highly compartmentalized, as these things tend to be. Very need to know. But there’d been rumors that something was under development, that [DARPA/ONR] Sea Hunter was really a prototype for a deep black program, something highly advanced and combat-oriented.

And so you arrive at Nassi Marine…

And Talia greets us in the lobby. Then it’s off to the conference room for small talk, sandwiches, and coffee. Then onto Falken and its potential for USVs. And then after about fifteen minutes Talia politely asks Max if he wouldn’t mind waiting outside. He leaves, and she reaches down, plucks a folder from her briefcase and slides it across the table. I open it up, and I’m looking down at a something straight out of Star Trek.

The Esquire-class?

It was honestly more spaceship than warship, at least on paper. Trimaran hull, nacelle-like outriggers, angular, stealth features. And for the next half hour or so, Talia briefs me on this revolutionary unmanned surface combatant, and I’m thinking, wow, this is some really impressive design work, not really imagining that it’s moved beyond the drawing board.

Did you wonder why you were being brought into the fold?

As far as I knew, I was there to talk about Falken, so it did strike me as odd that I’d be briefed on a deep black surface platform. But it wasn’t long before I understood why. One of the main features of the Esquire was its integrated microsubmarine bay. Talia had originally envisioned something that could accommodate a range of micro UUVs, but ultimately decided to focus on the Atom given its established AI and the seamless integration it offered.

Nassi Marine headquarters is sometimes referred to as “Lake Talia” for its enormous wave pool and micronaval testing facility. Did it live up to its name?

Absolutely!

When Talia finishes her briefing, I follow her down the hall and through a set of doors, and suddenly I’m staring at the largest indoor pool I’ve ever seen. It’s basically her own private Carderock, but nearly four times the size and twice as deep. When she founded Nassi Marine, Talia wanted somewhere she could put classified systems through their paces in a controlled, secure environment that was free from prying eyes. Dahlgren [Maryland] and Bayview [Idaho] were far too visible for her, so she acquired some surplus government land in rural Maryland and nestled a cutting edge R&D facility between a country club and an alpaca farm.

Was there a working prototype of the Esquire?

Talia walks me over to the dry dock, and there it is.

What was your impression?

I was struck by how small it was. At only fifty feet long, it was less than half the length of Sea Hunter. But it looked fierce, and according to Talia, packed a mean punch. Fifty caliber deck gun, VLS for shooting nanomissiles and Foxhawks, a newly developed swarming drone. It also featured a hangar and landing pad for quadrotor drones, as well as two directed energy turrets and countermeasure launchers. And of course, the integrated well deck-like feature for the launch and recovery of microsubmarines. And these were just the kinetics. It also packed a range of advanced sensors and non-kinetic effectors as well.

So, between the engineering and AI integration, you had your work cut out.

Indeed we did. Talia put me on the spot for an ETA, and after giving it some thought, I estimated six to nine months for the full deal. That’s when she hits me with the punch line: “You’ve got three.”

Three months?

Three! I was like look, we might be magicians at FathomWorks, but we’re not miracle workers. And anyway what’s the hurry? Talia looks me right in the eye and says, “Because in about 18 months it’s headed to the South China Sea.”

Did that come as a shock?

The timetable was certainly a shock, but it was also the first I’d heard that any plans for escalation had moved beyond the gaming table. The handwriting had been on the wall for years, of course, so I wasn’t surprised, and honestly it came as a relief knowing that a tangible response was finally in the offing.

So you embark on the Atom integration, and at the same time you’re overseeing Eminent Shadow . . .

Which has now been greatly expanded in the wake of Nanxun Jiao. At its peak I think there were no less than forty Strikepods – about two hundred fifty Atoms – dotting the Spratlys and Paracels, providing FONOP escort and monitoring PLAN and militia activities both on and below the surface.

And the Shāyú was proving itself to be an ideal tool for the gray zone.

Indeed. After Nanxun Jiao, the Chinese were utterly emboldened and were becoming ever more ballsy. Nearly every FONOP was met with Shāyú harassment, and even though we’d stepped up Atom production and significantly increased our operational footprint, it was challenging to keep up. And PLAN engineers were becoming ever more creative.

How so?

They’d been working on a micro towed array for the Shāyú, similar to what we’d been developing for the Block II Atom. From what we could tell, they weren’t having much success, but they did find that it could be effective for gray zone effects. Shāyús would make runs at our DDGs with arrays extended, and once in a while penetrate the Strikepod perimeter and foul the screws pretty good. Even if publically the Chinese didn’t take credit, there was significant propaganda value in disabled U.S. warships.

Were you also monitoring for new indications of seabed construction?

Our main concern was the northeastern Spratlys and southern Paracels near the shipping lanes. With a foothold in either of those locations, the Chinese would have near complete maritime domain awareness over the South China Sea. So our mission was to closely monitor those areas, and report back anything anomalous. It wasn’t long before we found something.

The emplacements at Bombay Reef and Scarborough Shoal?

We’d been monitoring inbound surface traffic when satellites spotted some unusual cargo being loaded onto a couple fishing trawlers up in Sanya. We vectored Strikepods as they departed, and trailed them to Bombay and Scarborough where we snapped some surface imagery of divers and equipment being lowered over the side. We monitored for about five days, keeping our distance, and picking up all manner of construction noise. We’re itching to take a look, but wait patiently for crew changes and quickly order the imagery. The Strikepods are in and out in under five minutes, and two Relay burst transmissions later we’re looking at the beginnings of Shāyú turrets at both locations.

What was your analysis?

It indicated that the Chinese were planning for future confrontations in the region – gray zone or conventional, most likely due to their planned militarization of Bombay and Scarborough.

The implications were grave. Vietnam had a history of taking on great powers and winning, and had pushed back hard on China in the past. And while Duterte had been cozying up to Beijing and drifting away from the U.S., Scarborough Shoal would be a red line. A provocation like this could be just the excuse Hanoi and Manila needed to act.

Did the United States share the intelligence?

Not initially, no. First and foremost we needed to safeguard sources and methods, and sharing anything would reveal our micronaval capabilities which were still highly classified and largely unknown. The Shāyú was also still a mystery, and divulging what we knew to Hanoi or Manila would risk exposure to Beijing. And we couldn’t be sure that they wouldn’t act unilaterally, igniting a conflict that could draw us into a war with China.

You were obviously busy at SPODCOM overseeing Eminent Shadow, but FathomWorks was also working intensively now with Nassi Marine.

Once we discovered Bombay and Scarborough, the sense of urgency was high, and we were working around the clock to get the Esquire combat ready. We ran through countless simulated missions in the Lake, and eventually at sea off North Carolina. Talia handed it off for production on time and under budget, and we joined the operational planning underway at Seventh Fleet.

Eminent Shadow was about to become Eminent Shield?

Yes. Of course planning for a South China Sea incursion had been underway for several years, and it was only after Locust Point that I’d been asked to join, to integrate micronaval elements into the wargaming framework.

But during those games, there was no mention of the Esquire?

Not initially, no. All we were told was that, in addition to being deployed from Virginias and surface ships, Strikepods could also be launched and recovered from a hypothetical USV with fairly abstract capabilities. But once the Esquire moved beyond the design phase, and there was a working prototype, it was folded into the games going forward.

And those games formed the basis for Eminent Shield?

Eventually they did, yes, but initially we were running scenario after scenario of high-end warfighting. There were some smaller skirmishes and limited conflicts where we intervened on behalf of regional states, but in general the primary objective was always either stopping or rolling back Chinese expansion, with the Esquires called upon as a force multiplier to augment ISR and EW, act as decoys, deploy Strikepods for ASW and counter-microsubmarine ops, and take out small aerial threats. Plausible to be sure, but at some point it occurred to me that the Esquire might enable us to project power in a less conventional, but no less effective manner. To essentially meet the Chinese where they were.

So we gamed some scenarios where the U.S. assumed a greater presence in the South China Sea using unmanned systems. Something beyond FONOPS and undersea reconnaissance. Something visible and formidable enough to send a strong signal to Beijing without provoking a shooting war. A kind of gray zone gunboat diplomacy, if you will, pushing things to the edge while gambling that the Chinese wouldn’t resort to a kinetic response.

Turnabout is fair play.

That it is.

How was it received?

Well, people appreciated that it was bold and imaginative, I suppose, but ultimately felt it was fraught with uncertainty, that it would only serve to antagonize the Chinese, and quickly escalate to high-end conflict anyway.

So it went to the back burner?

Yes, but I continued to refine it, along with input from Talia, who eventually came on board as strategic advisor, as well as some folks at the Pentagon and Intelligence. Once the discoveries at Bombay and Scarborough happened, though, the administration was looking for options . . .

And you got the call-up.

Yes, ma’am.

What was the plan?

The overarching objective of Eminent Shield was to signal that the United States would no longer sit idly by as the South China Sea was transformed into a Chinese lake. And we would do this by establishing a permanent distributed maritime presence in the region using a network of unmanned surface combatants.

The plan itself involved four sorties of LSDs out of Sasebo to essentially seed the region with Esquires. At fifty feet long, with a beam of seventeen, we determined that a dozen would fit into the well deck of a Whidbey Island. After some practice with the Carter Hall and Oak Hill down at [Joint Expeditionary Base] Little Creek, we airlifted forty-eight to Sasebo, where they were loaded onto the Ashland, Germantown, Rushmore and Comstock. Separated by about thirty-six hours, they sailed on a benign southwesterly heading between the Spratlys and the Paracels, escorted by an SSN and two or three Strikepods to monitor for PLAN submarines and Shāyús. At a predetermined waypoint, and under cover of darkness, the Esquires would deploy, then sail to their preprogrammed op zone – two squadrons to the Paracels, two to the Spratlys, and one to Scarborough Shoal – and await further orders.

Was there concern that the Chinese would view such a rapid deployment as some kind of invasion? A prelude to war?

 We considered a more incremental approach, something less sudden. But we needed to act quickly, to avoid any kind of coordinated PLAN response – a blockade or other high profile encounter that could escalate. A rapid deployment would also underscore that the United States Navy had acted at a time and place of our choosing, and that we could operate in the South China Sea with impunity. At the end of the day, the Esquires were really nothing more than lightly armed ISR nodes, and were far less ominous than a surge of CVNs or DDGs.

Did it proceed as planned?

For the most part, yes. There were some technical hiccups, with three Esquires ultimately refusing to cooperate, so the final package was forty-five – nine vessels per squadron. The pilots and squadron commanders were based out of SPODCOM in Norfolk, but the Esquires were fully integrated into the regional tactical grid, and, if necessary, could be readily controlled by manned assets operating in theater.

And you were able to avoid PLAN or PAFMM harassment?

By sortie number four we’d gotten their attention – probably alerted by a nearby submarine – and three CCG cutters were vectored onto the egressing LSDs. But the deployment went off without incident, and in a few days all four ships were safely back in Sasebo.

And then we waited.

How long was it before the PLAN became aware?

It was about thirty-six hours before we began to see some activity near Subi Reef. The Esquire is small, and has a very low cross section, so it was unlikely they’d been tagged by radar. More likely they’d been spotted by an alert fishing boat, or passing aircraft, or possibly the heat signatures of the LENRs lit up a satellite.

At around 0300 I wake up to an “urgent” from the watch that about a dozen fishing boats were converging on Subi. So here we go. By the time I get to the office they’ve got the live feed up, and I watch the maritime militia descending in real-time. We order the Equire to deploy a six-ship Strikepod to enhance our visual, and pretty soon we’ve got a wide angle on the whole scene – lots of little blue men with binoculars, clearly perplexed, but no indications of imminent hostilities. This goes on for nearly three hours, until we notice some activity on one of trawlers. They’re prepping a dinghy with some tow rope and a four-man boarding party.

They’re going to grab it?

Certainly looks that way. They lower the dinghy and make their way over, inching to within ten meters or so, and that’s when we hit them with the LRAD [Long Range Acoustic Device], blasting a warning in Chinese – do not approach, this is the sovereign property of the United States operating in international waters. Things along those lines.

They turn tail and beat it back to the ship, but they’re not giving up. Next thing we see guys tossing headphones down to the dinghy. Needless to say, we weren’t about to give them a second chance, so we quickly order the Strikepod recovered and hit the gas.

Did they pursue?

They tried. But the Esquire can do about forty knots, and by the time they knew what was happening, we already had about 500 yards on them, so they gave up fairly quickly.

I imagine it wasn’t much longer before the other Esquires were discovered?

Word spread quickly of that encounter, and no, it wasn’t long before Esquires were being engaged by militia at multiple locations. In some cases they would try to board, in others they would attempt to blockade or ram. But the Esquires were too maneuverable, and between Falken and the pilots, we managed to stay a step or two ahead.

Had you anticipated this?

We’d anticipated the initial confusion and fits of arbitrary aggression. We also anticipated the political backlash, of course.

Which did manifest itself.

Yes, but not entirely how we’d envisioned. We knew that Beijing would be furious that the United States had mounted such an aggressive op in their own backyard. But at the same time, would they really want to draw that much attention to it? Wouldn’t that be underscoring the U.S. Navy’s ability to operate anywhere, anytime?

And the PLAN’s inability to prevent it.

Sure enough, state television reports that a U.S. Navy unmanned surface vehicle – singular – had violated Chinese sovereignty and was engaged by PLAN forces. Video footage flashed from a PLAN destroyer to a rigid hull speeding toward an Esquire, to a couple of hovering [Harbin] Z-9s. The implication was that the Esquire had been captured or otherwise neutralized, yet all forty-five were fully functional and responding. It was a clever propaganda stroke, but by going public, the Chinese had opened a Pandora’s box.

Because now the Western media was all over it?

And with the Esquire out in the open, we’d have a lot of explaining to do. There would be questions about capabilities, deployment numbers …

To which the answer was?

That we don’t comment on ongoing operations, of course. But, through calculated leaks and relentless investigative reporting, the Chinese would quickly realize what they were dealing with, and what it signaled in terms of U.S. intentions and resolve.

And meanwhile Eminent Shield continued. With unmanned FONOPS?

To start with, yes. The Esquires initially had taken up position outside twelve miles, but we soon began moving them intermittently inside territorial limits to deploy and recover a drone. By this point militia boats were always shadowing, and would move quickly to harass the Esquires as best they could.

But then we upped the ante a bit. We’d use onboard EW effectors to spoof their GPS and AIS. We’d lure their destroyers to one location while a DDG ran a FONOP just over the horizon, unmolested. We’d form ASW dragnets using smaller squadrons of three or four Esquires with their towed arrays and Strikepods deployed, sonar banging away.

And, yeah, we also installed dead wire in the towed arrays of some of the Atoms, so we were able to return the favor and foul some screws of our own.

What about the Shāyús?

The Shāyús were the greatest source of trouble for the Esquire, and we’d anticipated this. We couldn’t be certain whether or how the Chinese might engage the Esquires on the surface or in the air, but we were absolutely certain that there would be attacks from below.

But with the Esquire’s waterjets there were no screws to foul. And a six-ship Strikepod was deployed as an escort at all times, and there were also Firesquids [anti-torpedo torpedoes] for additional defense. But even so, the Esquires were quite vulnerable, and the Shāyús quickly moved to exploit this.

In what way?

The Esquires were defending well, but the Shāyú’s tactics were evolving. Initially they would engage the Atoms ship-to-ship and attempt to defeat them before moving on to the objective. But soon they learned to avoid the Atoms altogether and engage in hit and run attacks from below, targeting the Esquire’s stern in an attempt to ram and disable the microsubmarine bay and propulsion. Living up to their namesake, I suppose. [Shāyú is Mandarin for shark.]

Did Falken adapt accordingly?

Falken quickly recognized the need to deploy its full complement of Atoms to defend against the volume of attacking Shāyús, and actually began to form smaller squadrons of two or three Esquires to offset the numerical disadvantage. Falken also ordered escorting Strikepods to assume a tighter, closer formation, one that emphasized protecting the Esquire’s belly and backside, and began using Firesquids as decoys to great effect, something we hadn’t even considered.

Atom attrition was high then?

For a time, yes, and resupply was challenging. The payload modules on nearby Virginias were filled to capacity, but that was only around forty or fifty units. At the rate we were losing them, we’d be critical in a matter of weeks.

So the Shāyús adapt, Falken counters, but the attacks continue until one day the Shāyús succeed in disabling an Esquire within twelve miles of Mischief Reef.

And now it’s a race to recover.

The [USS] Mustin [DDG 89] was about forty kilometers away, and was immediately ordered to the area. The PLAN had also been alerted, and vectored the destroyer Haikou, which was only five kilometers away. So Mustin puts a Seahawk up, but even at full throttle Haikou is still going to win that race.

Haikou arrives, and they immediately put a boarding party in the water. ETA on the Seahawk is two minutes, and the Mustin is still thirty minutes away at flank. We blast the LRAD, but they’re wearing headphones now, so we fire a warning from the 50 cal, and light off a small swarm of Foxhawks. This gets their attention, and manages to buy us the few minutes we need.

The Seahawk arrives, loaded with Hellfires, and five minutes later, Mustin appears on the horizon. Now we’ve got ourselves a standoff. The Chinese are making threats, and we’re making counter-threats. And then the militia shows up – fishing boats, CCG, wrapping cabbage to cut off Mustin and the Esquire. And so we’re eyeball to eyeball, now, fingers on the trigger.

An hour goes by. Two. Eight. “Stand by” is the order. Twelve hours. Darkness falls, and we keep vigil through the night. By now, the media has it, and talk of war is everywhere. A new day dawns on the South China Sea, and around 1930 Eastern, I’m summoned to the vault for a telepresence with the Sit Room.

To brief?

Not exactly.

First they asked me to confirm the conclusions of my earlier analysis, that the Shāyú emplacements were likely a gray zone prelude to a Chinese land grab at Bombay Reef and Scarborough Shoal.

Then they asked whether I believed the Chinese would willingly dismantle Bombay and Scarborough in return for withdrawal of the Esquires.

And did you?

The Chinese would want the Esquires gone ASAP for political reasons, but they also were well aware of their capabilities, and how they would dramatically augment U.S. firepower in the event of regional hostilities. It seemed to me that Beijing would be willing to forfeit those locations if it meant a reduced U.S. military presence, and also the ability to save face by appearing to expel the U.S. Navy from the South China Sea.

And then I offered a pretty candid, if unsolicited, opinion on the deal.

Which was?

That the Chinese would be getting much more than they were giving up. That dismantling the emplacements, while a short-term loss for the Chinese and a gain for us, would do little to deter future militarization. The U.S. would also be giving up significant strategic leverage, and potentially damaging our credibility in the process.

So you were against it?

You’re damn right I was. Call me a hawk, but we’d gone round after round with Beijing for over a decade, and then took one on the chin at Nanxun Jiao. We’d finally taken decisive action, and now we’re just going to let it slip away?

But ultimately it did.

Unfortunately, yes.

Around 2200 the Chinese suddenly back off, and Mustin is allowed to move in and recover the Esquire. The next day news breaks of emergency multilateral talks in Tallinn, Estonia involving the U.S., China, Vietnam, Brunei, Malaysia, and the Philippines.

There was great optimism leading up to Tallinn, that this could be the diplomatic breakthrough that would empower regional states to push back on Beijing knowing that the U.S. had their back. But ultimately it was not to be. The Chinese dismantled the Shāyú emplacements at Bombay and Scarborough, and in return the United States withdrew every last Esquire. Beijing also pledged to work toward “greater understanding” with its neighbors and other ambiguous words to that effect. The Tallinn Communiqué was hailed as a success by all, but for entirely different reasons. The U.S. and our allies believed this was a significant step toward regional stability by checking Chinese expansionism. The Chinese, meanwhile, declared victory in having expelled the United States from its backyard while strengthening its role as regional hegemon.

Were you disappointed with the outcome? 

Disappointed? Perhaps. The Navy exists to ensure peace and protect U.S. interests through strength, and so when policy seems at odds with that mandate, yes, I guess it makes me bristle. But I wasn’t surprised. Tallinn wasn’t the first toothless resolution in the history of international diplomacy, and it certainly wouldn’t be the last.

And all I could think, sitting there in SPODCOM, watching the last of the Esquires being recovered under the watchful eye of PLAN warships, was that it wouldn’t be long before we’d be back there again.

Only next time, things might not end so cleanly.

[End Part III]

David R. Strachan is a naval analyst and writer living in Silver Spring, MD. His website, Strikepod Systems, explores the emergence of unmanned undersea warfare via real-time speculative fiction. Contact him at strikepod.systems@gmail.com.

Featured Image: “The Middle of Nowhere” by hunterkiller via DeviantArt

Drones in Africa: A Leap Ahead for Maritime Security

By CAPT Chris Rawley and LCDR Cedric Patmon

Technology adoption moves in fits and starts. The developing world cannot be forced into accepting new technology, but it can be enabled, and often in a surprising manner. A recent example is the leap in communications technology. During the 20th Century most of the world developed a robust network of terrestrial-based telecommunications based primarily on the ubiquitous land-line telephone system. Without this infrastructure in place Sub-Saharan African countries were largely left behind at the start of the information revolution. But at the turn of the new century something interesting happened. Rather than retroactively building an archaic phone system Africans embraced mobile phone technology. From 1999 through 2004 the number of mobile subscribers in Africa eclipsed those of other continents, increasing at a rate of 58 percent annually. Asia, the second fastest area of saturation, grew at only 34 percent during that time. The explosive growth of mobile phones and more recently smart phones across practically every African city and village has liberated economies and facilitated the free flow of information. This technology also enabled Africans to lead the world in mobile money payment solutions, bypassing increasingly obsolete banking systems.

Today, Africans have another opportunity to leap ahead in technology to protect one of their most important areas of commerce – their coastal seas. Africa’s maritime economy is absolutely critical to the continent’s growth and prosperity during the next few decades. On the edge of the Eastern Atlantic the Gulf of Guinea is bordered by eight West African nations, and is an extremely important economic driver. More than 450 million Africans derive commercial benefit from this body of water. The region contains 50.4 billion barrels of proven petroleum reserves and has produced up to 5.5 million barrels of oil per day. Additionally, over 90 percent of foreign imports and exports cross the Gulf of Guinea making it the region’s key connector to the global economy.

Favorable demographics and industrious populations put coastal Africans in a position to prosper, but an increase in illegal fishing activities and piracy since the early 2000s has severely impeded this potential. The growth in acts of piracy and armed robbery at sea in the Gulf of Guinea from 2000 onward points to the challenges faced by West African states.

According to Quartz Africa, illegal fishing activities in the region have a negative economic impact of $2-3 billion annually. “Fish stocks are not restricted to national boundaries, and that is why the solutions to end the overfishing of West Africa’s waters can only come from joint efforts between the countries of the region,” Ahmed Diame, Greenpeace’s Africa Oceans campaigner, said in a statement. Marine pollution, human, and narcotics trafficking are also major issues facing the region.

Due to the economic impact of illicit activities in and around West Africa a Summit of the Gulf of Guinea heads of state and government was held in 2013 in Yaoundé, Cameroon. This resulted in the adoption of the Yaoundé Declaration on Gulf of Guinea Security. Two key resolutions contained in the Declaration were the creation of an inter-regional Coordination Centre on Maritime Safety and Security for Central and West Africa, headquartered in Yaoundé, and the implementation of a new Code of Conduct Concerning the Prevention and Repression of Piracy, Armed Robbery Against Ships, and Illegal Maritime Activities in West and Central Africa. Adoption of this agreement has laid the foundation for critical information sharing and resource cooperation that can be used to combat piracy, illegal fishing, and other illicit activities in the Gulf of Guinea.

Though the Code of Conduct established an architecture for maritime security in the region, without enforcement on the water, diplomatic efforts are largely impotent. Key to enforcement is the ability to identify, track, and prosecute nefarious actors on the high seas and in coastal areas. So-called maritime domain awareness is gradually improving in the area, but current options for maritime surveillance are limited. The largest local navies have offshore patrol vessels capable of multi-day over-the-horizon operations, but even these vessels have limited enforcement capacity. Patrol vessels face maintenance issues and fuel scarcity. Shore-based radar systems at best reach out 30 or 40 nautical miles, but are plagued by power and maintenance issues. Moreover, a shore-based radar, even with signals correlated from vessels transmitting on the Automatic Identification System, only provides knowledge that a contact is afloat, not necessarily any evidence to illicit actions.

Latin American navies face similar maritime challenges to those in Africa and have learned that airborne surveillance is simply the best way to locate, track, identify, and classify surface maritime targets involved in illicit or illegal activity. A retired senior naval officer from the region related a study in the Caribbean narcotics transit zone to one of the authors that compared different surveillance mechanisms for the 11,000 square nautical mile area. The probability of detecting a surface target within six hours rose from only five percent with a surface asset to 95 percent when maritime patrol aircraft were included. Only a handful of coastal African countries have fixed-wing maritime patrol aircraft and helicopters, but these aircraft face similar issues to surface assets with fuel costs and mechanical readiness resulting in limited flight time on station.

Drone Solutions to African Maritime Insecurity

Unmanned aerial systems (UAS), or drones, as they are known colloquially, provide a way for African navies and coast guards to greatly enhance maritime security in a relatively inexpensive manner, similar to the ways mobile telephony revolutionized communications on the continent. Similar to the evolution of computing power outlined by Moore’s law tactical UAS are rapidly growing in capabilities while decreasing in cost. Improvements in sensors, endurance, and payload are advancing quickly. For any solution, acquisition cost, maintainability, and infrastructure required are key factors to be considered. The cost per flying hour of most UAS is negligible compared to their manned counterparts. Today’s fixed and rotary-wing systems, whether specifically designed for military use or for commercial applications, can be adapted for surveillance in a maritime environment without much additional cost.

A Falcon UAV unpiloted aircraft is bungee launched in a midday demonstration flight. (© Helge Denker/WWF-Namibia)

Because each country has unique requirements and budgets no single UAS solution is appropriate. Maritime drones can be based ashore or on coastal patrol vessels. One viable option for countries with limited resources involves services contracted by Western Partners, a model which has already been proven in the region for other applications. Alternatively, the Yaoundé Code of Conduct provides a framework for a possible shared model. This agreement can provide the timely sharing of critical information ascertained by maritime surveillance and reconnaissance systems to aid in the enforcement of the maritime laws and agreements in the region. Contractor-operated drones could be allocated across countries by leadership in the five Zones delineated by the Code. Multinational cooperation on maritime security has already been tested in the annual Obangame Express exercise and during real-world counterpiracy operations. Understanding that not all countries have the investment capability to purchase their own stand-alone systems, consideration could be given to sharing the initial investment costs between countries. The logistics of system placement and asset availability would have to be determined by the participating countries themselves but the benefit of such a program would positively impact the entire region economically, enhance interoperability, and assist in regional stability.

Drones are already being operated across Africa by Africans. Zambia recently purchased Hermes 450 unmanned aerial vehicles for counter-poaching operations. There are also African unmanned systems flying surveillance missions over areas plagued by violent extremists groups. UAS are even being used to transport blood and medical supplies across the continent’s vast rural landscapes. Shifting these assets over water is a natural progression. One concern about using UAS is airspace deconfliction. However, this problem is minimized because there is little to no civil aviation in most parts of Africa. Additionally, most maritime UAS would be flying primarily at low altitudes over water from coastal bases.

Conclusion

The leap-ahead capabilities that unmanned surveillance aircraft could provide to coastal security around Africa are clearly evident. African navies with adequate resources should make acquisition of unmanned air systems a priority. Likewise, western foreign military assistance programs should focus on providing contracted or organic unmanned aircraft capabilities.

Captain Rawley, a surface warfare officer, and Lieutenant Commander Patmon, a naval aviator, are assigned to the U.S. Navy’s Sixth Fleet’s Maritime Partnership Program detachment responsible for helping West African countries enhance their maritime security. The opinions in this article are those of the authors alone and do not officially represent the U.S. Navy or any other organization

Featured Image: GULF OF GUINEA (March 26, 2018) A visit board search and seizure team member from the Ghanaian special boat service communicates with his team during a search aboard a target vessel during exercise Obangame Express 2018, March 26. (U.S. Navy photo by Mass Communication Specialist 1st Class Theron J. Godbold/Released)

Self-Driving Ships Will Soon Raise the Stakes at Sea

The following article originally appeared on the Kennedy School Review and is republished with permission. Read it in its original form here.

By Cameron Lindsay

While Amazon continues to pilot its fully autonomous drone delivery system, Amazon PrimeAir, an autonomous delivery system millions of times larger is occurring at sea. And whether you are the passenger on-board a cruise ship or you hire a shipping company to transport your belongings overseas, in a few years, you will increasingly be at the mercy of a self-driving ship.

The prevalence of self-driving ships, or in more technical terms, autonomous surfaced vessels (ASV) or unmanned surfaced vessels (USV), which operate either remotely or completely independent of humans, is growing. And while for centuries mariners have sailed in awe of the ocean’s size and reverence of its might, the emergence of the self-driving ship ushers a new era of commercial economic opportunity as well as maritime security risks of miscalculation.

Similar to self-driving cars, most of the technology necessary for the development of a self-driving ship is mature and available at reasonably low cost. Using state-of-the-art computer algorithms within advanced radar, navigation, acoustic, and optical sensor payloads, self-driving ships are expected to operate more efficiently and safely than those operated by humans.

Self-driving ships present the opportunity for the commercial maritime industry to significantly increase profits through the reduction of costs associated with crew salaries, nourishment, fatigue, insurance, and decision bias. As described by the President of Rolls-Royce Marine Mikael Mäkinen, “autonomous shipping is the future of the maritime industry. As disruptive as the smartphone, the smart ship will revolutionize the landscape of ship design and operations. While Rolls-Royce is vying to build the first autonomous smart ship with Google, other companies like the Norwegian company Yara seek to be the world’s first remote controlled and then totally autonomous electric cargo ship in 2020.

However due to the technical complexity, lack of legal precedent, and political hedging associated with self-driving ships, one can expect the wave that brings higher commercial profits to also lower the propensity for international consensus on their use. Self-driving ships present challenges like those faced by federal and state governments today in implementing safeguards when introducing self-driving cars to the public. Yet unlike self-driving cars, these policies will need to address centuries-old maritime legal constructs, sovereignty protections, and universally established rules for how vessels interact on the high seas. The necessity of these policies to accommodate the commercial interests of ships longer than the height of the Empire State Building and communal practices of family owned fishing trawlers will be a significant challenge to policy makers.

Unlike driving your car on a well-regulated interstate highway system, moving further away from a given nation’s coast corresponds with the transition of sovereign territorial waters to an international patch work of treaty obligations under the United Nations (UN) Convention on the Law of the Sea and regulatory organizations, notably led by the International Maritime Organization (IMO). With its UN mandate to promote safe, secure, efficient, and environmentally sustainable shipping, the IMO has an opportunity to advance maritime safety, security, environmental protections, and economic opportunity through its embrace of technological innovation.

While the impact of self-driving ships will be a severe disruption to the commercial maritime industry, the technology will also punctuate a new era of maritime security strategy. Historically, the vast distance of the warship’s Captain from his state served to strengthen professional restraint while simultaneously weakening the temptation of jingoism. Using a command and control structure analogous to cyber and unmanned aerial vehicles (drones), an artificiality to the context of conflict engagement will exist between state authority and state actor. Development efforts underway today have already produced machines that can replicate some of the functions of fighter pilots and sentries, among others, and it appears inevitable that military system capabilities will continue to expand into areas traditionally the domain of human operators.

Nations seeking to capture a maritime strategic advantage may see the application of self-driving ships as a force multiplier to maritime search and rescue, mine clearance, and offensive operations. Conversely some nations may view the application of self-driving ships as their relief valve to unusually high operational demands resulting in accelerated personnel fatigue and vessel deterioration. When coupled with future advances in sustainable energy sources (solar, nuclear, and lithium-ion battery), self-driving ships will become an attractive investment alternative for global powers in extending their ability to project power by sea. Undoubtedly this regional and global great power competition will heighten the risk of miscalculation and unintentional conflict escalation as evident in the December 2016 seizure of an American unmanned oceanographic survey ship by Chinese naval forces.

For international maritime bodies, such as the IMO, International Seabed Authority, and International Whaling Commission, self-driving ships offer a low-cost approach for monitoring and reporting nation-state and private violators of maritime conventions. Through member nation financial support, the UN application of self-driving ships could respond to sustained maritime humanitarian crises while depoliticizing involvement and the risk to entrapment by member nations. This may serve as a pretext for the establishment of a sustainable internationally recognized unmanned maritime peacekeeping mission with the capacity to actively investigate illegal fishing off Somalia’s coast, resource exploitation near Fiji, environmentally damaging practices to the Great Barrier Reef, or freedom of navigation within the disputed South China Sea.

However, before the rewards of self-driving ships can be realized, their challenges must be acknowledged, accepted, and addressed through a combination of active diplomacy, smart policy, and visionary thinking.

Cameron Lindsay is a Master in Public Administration candidate at the Harvard Kennedy School and U.S. Navy Politico-Military Scholar. He is a graduate of the United States Naval Academy and Government Affairs Institute at Georgetown University. The views and opinions expressed are the author’s alone and do not represent the official position of the U.S. Navy, U.S. Department of Defense, or U.S. Government.

Featured Image: Autonomous ship concept (Rolls Royce)

Unmanned Mission Command, Pt. 2

By Tim McGeehan

The following two-part series discusses the command and control of future autonomous systems. Part 1 describes how we have arrived at the current tendency towards detailed control. Part 2 proposes how to refocus on mission command.

Adjusting Course

Today’s commanders are accustomed to operating in permissive environments and have grown addicted to the connectivity that makes detailed control possible. This is emerging as a major vulnerability. For example, while the surface Navy’s concept of “distributed lethality” will increase the complexity of the detection and targeting problems presented to adversaries, it will also increase the complexity of its own command and control. Even in a relatively uncontested environment, tightly coordinating widely dispersed forces will not be a trivial undertaking. This will tend toward lengthening decision cycles, at a time when the emphasis is on shortening them.1 How will the Navy execute operations in a future Anti-Access/Area-Denial (A2/AD) scenario, where every domain is contested (including the EM spectrum and cyberspace) and every fraction of a second counts? 

The Navy must “rediscover” and fully embrace mission command now, to both address current vulnerabilities as well as unleash the future potential of autonomous systems. These systems offer increased precision, faster reaction times, longer endurance, and greater range, but these advantages may not be realized if the approach to command and control remains unchanged. For starters, to prepare for future environments where data links cannot be taken for granted, commanders must be prepared to give all subordinates, human and machine, wide latitude to operate, which is only afforded by mission command. Many systems will progress from a man “in” the loop (with the person integral to the functioning), to a man “on” the loop (where the person oversees the system and executes command by negation), and then to complete autonomy. In the future, fully autonomous systems may collaborate with one another across a given echelon and solve problems based on the parameters communicated to them as commander’s intent (swarms would fall into this category). However, it may go even further. Mission command calls for adaptable leaders at every level; what if at some level the leaders are no longer people but machines? It is not hard to imagine a forward deployed autonomous system tasking its own subordinates (fellow machines), particularly in scenarios where there is no available bandwidth to allow backhaul communications or enable detailed control from afar. In these cases, mission command will not just be the preferred option, it will be the only option. This reliance on mission command may be seen as a cultural shift, but in reality, it is a return to the Navy’s cultural roots.

Back to Basics

Culturally, the Navy should be well-suited to embrace the mission command model to employ autonomous systems. Traditionally once a ship passed over the horizon there was little if any communication for extended periods of time due to technological limitations. This led to a culture of mission command: captains were given basic orders and an overall intent; the rest was up to them. Indeed, captains might act as ambassadors and conduct diplomacy and other business on behalf of the government in remote areas with little direct guidance.2 John Paul Jones himself stated that “it often happens that sudden emergencies in foreign waters make him [the Naval Officer] the diplomatic as well as the military representative of his country, and in such cases he may have to act without opportunity of consulting his civic or ministerial superiors at home, and such action may easily involve the portentous issue of peace or war between great powers.”3  This is not to advocate that autonomous systems will participate in diplomatic functions, but it does illustrate the longstanding Navy precedent for autonomy of subordinate units.

Another factor in support of the Navy favoring mission command is that the physics of the operating environment may demand it. For example, the physical properties of the undersea domain prohibit direct, routine, high-bandwidth communication with submerged platforms. This is the case with submarines and is being applied to UUVs by extension. This has led to extensive development of autonomous underwater vehicles (AUVs) vice remotely operated ones; AUVs clearly favor mission command.

Finally, the Navy’s culture of decentralized command is the backbone of the Composite Warfare Commander (CWC) construct. CWC is essentially an expression of mission command. Just as technology (the telegraph cable, wireless, and global satellite communication) has afforded the means of detailed control and micromanagement, it has also increased the speed of warfighting, necessitating decentralized execution. Command by negation is the foundation of CWC, and has been ingrained in the Navy’s officer corps for decades. Extending this mindset to autonomous systems will be key to realizing their full capabilities.

Training Commanders

This begs the question: how does one train senior commanders who rose through the ranks during the age of continuous connectivity to thrive in a world of autonomous systems where detailed control is not an option? For a start, they could adopt the mindset of General Norman Schwarzkopf, who described how hard it was to resist interfering with his subordinates:

“I desperately wanted to do something, anything, other than wait, yet the best thing I could do was stay out of the way. If I pestered my generals I’d distract them:  I knew as well as anyone that commanders on the battlefield have more important things to worry about than keeping higher headquarters informed…”4

That said, even while restraining himself, at the height of OPERATION DESERT STORM, his U.S. Central Command used more than 700,000 telephone calls and 152,000 radio messages per day to coordinate the actions of their subordinate forces. In contrast, during the Battle of Trafalgar in 1805, Nelson used only three general tactical flag-hoist signals to maneuver the entire British fleet.5

Commanders must learn to be satisfied with the ambiguity inherent in mission command. They must become comfortable clearly communicating their intent and mission requirements, whether tasking people or autonomous systems. Again, there isn’t a choice; the Navy’s adversaries are investing in A2/AD capabilities that explicitly target the means that make detailed control possible. Furthermore, the ambiguity and complexity of today’s operating environments prohibit “a priori” composition of complete and perfect instructions.

Placing commanders into increasingly complex and ambiguous situations during training will push them toward mission command, where they will have to trust subordinates closer to the edge who will be able to execute based on commander’s intent and their own initiative. General Dempsey, former Chairman of the Joint Chiefs of Staff, stressed training that presented commanders with fleeting opportunities and rewarding those who seized them in order to encourage commanders to act in the face of uncertainty.

Familiarization training with autonomous systems could take place in large part via simulation, where commanders interact with the actual algorithms and rehearse at a fraction of the cost of executing a real-world exercise. In this setting, commanders could practice giving mission type orders and translating them for machine understanding. They could employ their systems to failure, analyze where they went wrong, and learn to adjust their level of supervision via multiple iterations. This training wouldn’t be just a one-way evolution; the algorithms would also learn about their commander’s preferences and thought process by finding patterns in their actions and thresholds for their decisions. Through this process, the autonomous system would understand even more about commander’s intent should it need to act alone in the future. If the autonomous system will be in a position to task its own robotic subordinates, that algorithm would be demonstrated so the commander understands how the system may act (which will have incorporated what it has learned about how its commander commands).

With this in mind, while it may seem trivial, consideration must be made for the fact that future autonomous systems may have a detailed algorithmic model of their commander’s thought process, “understand” his intent, and “know” at least a piece of “the big picture.” As such, in the future these systems cannot simply be considered disposable assets performing the dumb, dirty, dangerous work that exempt a human from having to go in harm’s way. They will require significant anti-tamper capabilities to prevent an adversary from extracting or downloading this valuable information if they are somehow taken or recovered by the enemy. Perhaps they could even be armed with algorithms to “resist” exploitation or give misleading information. 

The Way Ahead

Above all, commanders will need to establish the same trust and confidence in autonomous systems that they have in manned systems and human operators.6 Commanders trust manned systems, even though they are far from infallible. This came to international attention with the airstrike on the Medecins Sans Frontieres hospital operating in Kunduz, Afghanistan. As this event illustrated, commanders must acknowledge the potential for human error, put mitigation measures in place where they can, and then accept a certain amount of risk. In the future, advances in machine learning and artificial intelligence will yield algorithms that far exceed human processing capabilities. Autonomous systems will be able to sense, process, coordinate, and act faster than their human counterparts. However, trust in these systems will only come from time and experience, and the way to secure that is to mainstream autonomous systems into exercises. Initially these opportunities should be carefully planned and executed, not just added in as an afterthought. For example, including autonomous systems in a particular Fleet Battle Experiment solely to check a box that they were used raises the potential for negative training, where the observers see the technology fail due to ill-conceived employment. As there may be limited opportunities to “win over” the officer corps, this must be avoided. Successfully demonstrating the capabilities (and the legitimate limitations) of autonomous systems is critical. Increased use over time will ensure maximum exposure to future commanders, and will be key to widespread adoption and full utilization.  

The Navy must return to its roots and rediscover mission command in order to fully leverage the potential of autonomous systems. While it may make commanders uncomfortable, it has deep roots in historic practice and is a logical extension of existing doctrine. Former General Dempsey wrote that mission command “must pervade the force and drive leader development, organizational design and inform material acquisitions.”Taking this to heart and applying it across the board will have profound and lasting impacts as the Navy sails into the era of autonomous systems.

Tim McGeehan is a U.S. Navy Officer currently serving in Washington. 

The ideas presented are those of the author alone and do not reflect the views of the Department of the Navy or Department of Defense.

References

[1] Dmitry Filipoff, Distributed Lethality and Concepts of Future War, CIMSEC, January 4, 2016, http://cimsec.org/distributed-lethality-and-concepts-of-future-war/20831

[2] Naval Doctrine Publication 6: Naval Command and Control, 1995, http://www.dtic.mil/dtic/tr/fulltext/u2/a304321.pdf, p. 9      

[3] Connell, Royal W. and William P. Mack, Naval Customs, Ceremonies, and Traditions, 1980, p. 355.

[4] Schwartzkopf, Norman, It Doesn’t Take a Hero:  The Autobiography of General Norman Schwartzkopf, 1992, p.523

[5] Ibid 2, p. 4

[6] Greg Smith, Trusting Autonomous Systems: It’s More Than Technology, CIMSEC, September 18, 2015, http://cimsec.org/trusting-autonomous-systems-its-more-than-technology/18908     

[7] Martin Dempsey, Mission Command White Paper, April 3, 2012, http://www.dtic.mil/doctrine/concepts/white_papers/cjcs_wp_missioncommand.pdf

Featured Image: SOUTH CHINA SEA (April 30, 2017) Sailors assigned to Helicopter Sea Combat Squadron 23 run tests on the the MQ-8B Firescout, an unmanned aerial vehicle, aboard littoral combat ship USS Coronado (LCS 4). (U.S. Navy photo by Mass Communication Specialist 3rd Class Deven Leigh Ellis/Released)