Category Archives: Capability Analysis

Analyzing Specific Naval and Maritime Platforms

Aviation as the Key to Navy-Marine Integration

By Carl Forsling

Marine Aviation Needs to Enhance Naval Integration

The Corps has drifted away from the Navy over the last two decades, and it didn’t need the Navy in Iraq or Afghanistan. Shortages of amphibious shipping combined with a need to justify force structure gave birth to shore-based SPMAGTFs. This trend has led to less-than-seamless integration between the Marine Corps and Navy. In the future fight, this gap leaves amphibious forces more vulnerable and less deadly than they should be. 

The new Commandant of the Marine Corps, General David Berger, said in his planning guidance, “…there is a need to reestablish a more integrated approach to operations in the maritime domain.” By virtue of their range and speed, aviation assets are inherently able to bridge gaps. Amphibious forces usually take this as meaning between the sea and the land, but it also bridges gaps between forces at sea.

Amphibious ships can no longer serve merely as transportation for their embarked Marines. In the future anti-access/area denial (A2/AD) environment, they have to be part of the open-ocean kill chain. If the naval services are to enhance their survivability and lethality against the medium- and high-threat fights of the future, they have to combine their efforts and their assets. The keystone of that effort will be the aviation assets of the Marine Expeditionary Unit (MEU) and Expeditionary Strike Group (ESG). They must be reconfigured to better exploit aviation platforms such as the V-22 and F-35B, and turn the Corps into a force for sea control.

The strength of the Navy and Marine Corps team is the use of seaborne mobility to achieve effects on land. New aviation platforms can reinvigorate this for the 21st century, making both the Navy and Marine Corps more survivable, deadly, and integrated.

Ospreys Enable Naval Distributed Operations

In Marine parlance, “distributed operations” mean small units scattered throughout a given ground commander’s area of responsibility. In Navy parlance, distributed maritime operations are those within a naval commander’s area of responsibility. Rarely are the two domains intertwined, but now they need to be.

Marines routinely practice distributed operations within the ships of an Amphibious Ready Group (ARG) – performing “split-ARG” ops at widely separated locations. But this is much less common among the ships of the larger Expeditionary Strike Group, which adds attached surface combatants and often a submarine. 

It is virtually unheard of to detach Marines to other ships, such as those in a carrier strike group. The ARG typically does not integrate much with the rest of the Navy, but in the future, it will need to in order to survive. To that end, why are Ospreys tethered to ships at all, much less particular ships? Ospreys are easier to maintain on land. With the two KC-130Js normally assigned to the MEU, they can reach anywhere in most theaters within hours. 

SPMAGTF-CR-AF’s Ospreys can reach much of the 6th Fleet area of operations on one tank of gas from Moron, Spain. They could reach even further from a centrally located base like Sigonella. SPMAGTF-CR-CC can reach most of the CENTCOM AOR from its base in Kuwait. The Pacific isn’t quite as easy to traverse, but the Osprey has proven itself unique among rotorcraft in covering those distances, having already transited from Hawaii to Australia for the Marine Rotational Forces in Darwin.  

The tiltrotor squadron assigned to SPMAGTF-CR-CENTCOM and the half-squadron with SPMAGTF-CR-AFRICOM are burning out aircraft and people for little operational benefit. By making the MEU MV-22s and the tiltrotor company land-based, the SPMAGTFs are made redundant. Eliminating those would save six deployed MV-22s in the Mediterranean and 12 in CENTCOM. That would strengthen the VMM community and allow it to better support the MEUs. 

Instead of having a SPMAGTF in a given theater in addition to MEU assets, the MEU VMM, tiltrotor company, and KC-130Js would shadow the MEU from shore instead. In Europe, for example, they might primarily work out of Sigonella, but could move to Djibouti to support operations in the Horn of Africa or Romania to counter Russian moves in the Balkans. 

If the rest of the MEU is needed, the tiltrotor-borne unit could be a rapidly deployable advance element, or conversely, remain in strategic or operational reserve. The base tiltrotor squadron, KC-130J detachment, and tiltrotor infantry company would essentially be an airmobile split ARG, capable of independent action, but rejoining the MEU main body when necessary. They could immediately take spots on the air plan ferrying Marines ashore, recovering aboard ship, or to an airfield as the situation dictates. 

For many missions, there is no need to commit the entire Amphibious Ready Group (ARG) or ESG when V-22s can take Marines almost anywhere in theater. It saves these warship formations from having to steam for days. It also affords another way to split the MEU besides just between the ships in the ARG, increasing flexibility and the MEU’s ability to respond to multiple contingencies. In certain threat environments, staging Marines from ships other than amphibious platforms may be the most survivable option, offering greater distribution and putting a greater number of the enemy’s shore bases at risk of amphibious assault. The enemy will never be entirely sure which vessels present that threat, complicating their threat analysis.

Once the MEU doesn’t have to be in one place, or even two, options expand. Amphibious ships aren’t the only vessels Marines can stage from. Ospreys can land on many other naval vessels, even if they can’t support sustained flight operations. The Ospreys could embark, or they might just deliver a contingent of Marines, by alternate insertion means (FAST rope, hoist, etc.) if necessary. Then the ship’s organic air and surface assets would come into play.

With the right preparation, much of the Navy’s fleet could become staging areas for Marines. 

Aircraft carriers are certainly capable of supporting MV-22s. CVNs typically carry two squadrons of H-60s and will soon have their own CMV-22s Ospreys, so have a robust organic insertion capability. They also have sufficient billeting for any GCE Marines. If MV-22s deliver Marines to destroyers or cruisers, those also often have their own helicopters. While they typically carry the MH-60R, not optimized for troop transport, Marines could still use those ships as lilypads for certain missions. Those ships could also deploy small craft with Marines aboard. That would typically be for naval missions like interdiction and counterpiracy, but could also include going ashore for embassy reinforcement or humanitarian assistance. In permissive environments, even USNS vessels could provide staging areas for a small GCE. 

Strike – A Primary Mission

Moving the Ospreys and the tiltrotor company off the ship or distributing these assets across more ships frees up plenty of space above and below deck. This allows for other assets that are more dependent on shipboard space compared to more flexible aviation assets. Those can bring new capabilities such as increased lethality.

Given the number of active theaters today, the 11 big-deck carriers are not enough. However, with the F-35B amphibious strike capability is no longer just providing bomb trucks for low-threat sideshows new amphibious assault formations can strike targets in high-threat environments.

The F-35B is not just a replacement for the AV-8B. It is a 5th generation multirole fighter, capable of penetrating integrated air defenses. But six F-35s per MEU is not sufficient. Due to the situational awareness the F-35 provides pilots, its preferred maneuver element is a division of three or four aircraft, vice the sections of two that AV-8Bs typically employ. Given 75 percent availability, eight aircraft are required to make two light divisions, and thus support sustained combat flight operations. With eight F-35Bs, both the strike and counter-air capabilities of the MEU are dramatically improved. Having a baseline detachment of eight F-35s per MEU will enable a full spectrum of missions, especially a fairly robust offensive and defensive counter-air capability, which the AV-8B was only able to perform in relatively permissive environments. 

Having more F-35s doesn’t just mean more bombs on target. F-35s make every other combatant around them more effective. For example, F-35Bs are capable of directing SM-6 intercepts, HIMARS strikes, and providing in-flight retargeting support to other networked munitions. The SM-6 is not only a capable SAM, but can also be used to engage surface targets. The HIMARS is not limited to working ashore, but can also be fired from a ship’s deck, filling the long-neglected gap in naval gunfire support. Ship-launched HIMARS could also provide amphibious platforms with a powerful new anti-ship capability without requiring launch cells, further expanding the high-end mission set to include sea control.

The F-35 links the ships of the ESG together into something far more deadly and survivable than before. Big-deck amphibs can become formidable strike platforms, reaching out not just with the F-35Bs themselves, but also with their networking support for other shooters distributed across the battlespace.

HSC to VSC?

If LHAs and LHDs are to be legitimate strike and counter-air platforms, they are going to need greater logistics and search-and-rescue (SAR) capability. The current Navy SAR detachment aboard the LHD/LHA is only capable of relatively short-range recovery in secure areas, generally overwater “planeguard” duty. But soon the Navy will be fielding its own enhanced variant of the MV-22, the CMV-22.

A CMV-22 detachment would enhance the capability of both the Navy and the Marine Corps team. With CMV-22s aboard, the Navy could reclaim the long-range SAR mission. This is key if amphibs are going to routinely serve as strike platforms and perform a greater role in sea control. With the right equipment and personnel, this could provide a capability well up the SAR decision matrix, making a VSC detachment valuable as a joint theater personnel recovery asset.

Using more F-35Bs means using more engines, including those the CMV-22 is uniquely suited to carry, not to mention the additional bombs and missiles a “lighting carrier” would need. This is in addition to the benefits of being able to conduct longer-range resupply in general, especially at the distances involved in the Indo-Pacific. The CMV has an 1150nm range, roughly 300nm greater than an MV.

That is not a small investment on the part of the Navy. Replacing the expeditionary MH-60S with CMV-22s would require 22 aircraft, assuming that the squadron and the ship keep similar deploy-to-dwell ratios. With additional Fleet Replacement Squadron, pipeline, and attrition aircraft, the ultimate requirement would be 25 to 30 CMV-22s to sustainably outfit all the big-deck amphibs. That said, the MH-60S is starting to come up on the point when recapitalization is necessary. With the CMV-22 already being purchased for COD, expanding that community to include the gator Navy offers a huge increase in capability for a marginal increase in cost.

In exchange for that investment, the Navy and Marine Corps can make a leap from a marriage of convenience in their rotorcraft fleets to a truly synergistic and integrated partnership.

Room to Grow

Even with the addition of F-35Bs and trading MH-60Ss for CMV-22s, there is still significant room for adding capability.

One of the recurring complaints about the MV-22 is that it is too large for certain missions, such as VBSS (Visit Board Search and Seizure). While the UH-1N was not able to do significant troop lift, the UH-1Y can. That means the aviation combat element (ACE) needs at least four, not the typical three aircraft. At a readiness rate of 75 percent, that would allow a section of UH-1Ys to be devoted to assault support, especially in support of special missions and hard hits. The third would be able to perform any other tasks in the utility mission set. The Marine Corps has already purchased attrition aircraft over its T/O requirement that could be used to fill this need immediately. If this employment proves useful, additional UH-1Ys could be purchased to preserve this capability into the future.

There are normally four AH-1Zs assigned to the ACE. With a typical four aircraft to make three, the addition of that extra UH-1Y would allow an extra mixed section of skids to provide CAS and FAC(A) when shooting becomes the priority. The Yankee brings significant CAS capability, including Precision Guided Munitions – for now just APKWS rockets, but in the future, likely Hellfire missiles as well. 

Unmanned Systems 

The Marine Corps and the Navy are working past each other when it comes to UAS. The Marines field small tactical platforms and the Navy seeks to enhance sea control with larger systems. Neither of those efforts reaches the other, nor provides top cover for the critical period when Marines transition ashore.

The Marine Corps has begun the MAGTF Unmanned Expeditionary program (MUX), looking to acquire a large UAS capable of vertical takeoff. For CAS and persistent ISR, it requires a Group 5 UAS, a huge asset in normal MEU operations. Just as importantly, a VSTOL UAS with a reconfigurable payload and long endurance would make every platform around it, both Navy and Marine, more capable.

Currently the ESG does not have an Airborne Early Warning (AEW) capability. Its organic sensors are limited by line-of-sight from just above the waterline, or at best from the radars of MH-60Rs from surface combatants, which can provide coverage for only a few hours at a time, even if they are near enough. Sea-skimming threats traveling below the radar horizon would pose a considerable threat, making an organic AEW capability fundamental for awareness and survivability in a high-end threat environment.

Currently an LHD or LHA flight deck is able to support only eight to twelve hours of flight operations a day. A long-endurance UAS would extend this coverage greatly, staying in the air even when ships aren’t at flight quarters. With two, ideally three, AEW-equipped units, MUX would enable almost continuous coverage.

AEW would allow the F-35Bs to stay on the deck in an alert status appropriate for the threat, vice burning hours overhead performing the same AEW function. MUX could also detect and cue air or surface targets for other shooters. Long-range weapons like Tomahawk and the Long Range Anti-ship Missile (LRASM) work best when standoff observation and in-flight retargeting support is readily available, and where unmanned aviation platforms can be more readily risked to provide time-critical networking support.  

Marines are still Naval Infantry

In the future, we can’t assume that we will possess uncontested sea control, whether in the objective area or in transit. The ESG may have to fight its way there. Every asset aboard every ship, including manned and unmanned aircraft, whether they have “Marines” or “Navy” painted on the side, must work in concert. We need to move beyond the construct where the Navy exists only to move Marines to an objective, into one where elements of both are a cohesive fighting team from embarkation to debarkation.

With V-22s, every ship can have access to a Marine detachment when needed. We do not always need CVNs for strikes if we have F-35B-capable amphibious ships. With additional UH-1Ys, the ACE can execute more direct action missions and CAS, relieving other high-demand assets. And with the right UAS providing overwatch, the ESG should never be surprised.

Once we stop thinking of the Navy and Marine Corps as operating in distinct domains, the survivability and lethality of the ESG and the MEU, and even carrier strike groups and surface action groups will be increased. Employed correctly, emerging Marine and Navy aviation platforms, such as the F-35B, CMV-22, and MUX, combined with the assets of the MEU, ARG, and ESG, will make the integrated Navy-Marine team more capable and deadly. 

Carl Forsling is a retired Marine officer and pilot with multiple deployments flying the CH-46E and MV-22B as well as advising Afghan security forces. He currently works in the aerospace industry and is a senior columnist at Task&Purpose. He is a graduate of the University of Pennsylvania and Boston University. He is married with two children and lives in Arlington, Texas.

Featured Image: BAB EL-MANDEB STRAIT (Aug. 18, 2019) The amphibious assault ship USS Boxer (LHD 4) transits in formation through the Bab el-Mandeb Strait. (U.S. Marine Corps photo by Lance Cpl. Dalton S. Swanbeck/Released)

Tightening the Chain: Implementing a Strategy of Maritime Pressure in the Pacific

The following is adapted from a recent report by the Center for Strategic and Budgetary Assessments, Tightening the Chain: Implementing a Strategy of Maritime Pressure in the Western Pacific.

By Peter Kouretsos

The U.S. military has a problem in the Western Pacific: the tyranny of distance and time. Delivering military force across the vast Pacific Ocean has never been easy, even for a country as blessed in resources and ingenuity as the United States. The problem has worsened as America’s chief regional rival, China, has improved its ability to harm American interests quickly and with limited forewarning. Seventy years after Mao Zedong proclaimed the People’s Republic of China, China’s military capabilities have matured to the point where, if directed by the Chinese Communist Party (CCP), the People’s Liberation Army (PLA) could launch a rapid attack to change the status quo, including territorial seizure, before the United States could meaningfully respond, thus presenting Washington with a fait accompli. American forces located outside the conflict area would have to penetrate China’s anti-access/area-denial (A2/AD) network to restore the status quo ex-ante, a daunting proposition. Under these circumstances, Washington might face the unenviable choice of doing nothing or escalating to higher levels of violence. Either way, the national interests of both the United States and its closest allies would suffer dramatically.

To address this challenge, a new CSBA report proposes a U.S. military strategy of Maritime Pressure and a supporting joint operational concept, “Inside-Out” Defense, to stabilize the military balance in the Western Pacific and deny China the prospect of a successful fait accompli. The report goes beyond previous studies by outlining a new operational concept, assessing potential Chinese responses, and estimating the budgetary costs of implementing it.

Strategy in Brief

The United States faces a geographic asymmetry in the Western Pacific. China’s primary territorial concerns—Taiwan, the South China Sea, and the East China Sea—are far closer to its mainland than they are to the United States. In contrast, the United States has territory, allies, and interests in the Western Pacific but must traverse the expanse of the Pacific Ocean to defend them. At the same time, the PLA has developed a counter-intervention doctrine and supporting A2/AD capabilities to stifle the U.S. military’s ability to project power rapidly into, or operate effectively within, the Western Pacific during a conflict. Given these challenges, the United States would be hard-pressed to overcome the tyranny of distance and Chinese A2/AD capabilities quickly enough to deny a Chinese fait accompli.

For example, in the direst scenario involving an all-out PLA attack on Taiwan, U.S. and allied military forces would have to respond in force quickly, within hours or days, to thwart a Chinese fait accompli attempt. U.S. and allied forces would not have weeks or months to concentrate in mass near the theater of operations and then counterattack before China seizes control of Taiwan or forces the Taiwanese government into submission. Nor would friendly forces have time to fight their way to decisive points in the battlespace if they begin the conflict outside China’s A2/AD bubble. Moreover, attempting to rollback Chinese gains and liberate Taiwan after the fact would be difficult, costly, and potentially escalatory.

American policymakers are right to worry about such a scenario. History shows that deterrence is more likely to fail when an aggressor believes it can pull off a fait accompli successfully. If Chinese leadership believes it can achieve gains through aggression quickly and without paying steep costs in blood, treasure, and reputation, it may be tempted to escalate a crisis to open conflict.

As a deterrence by denial strategy, Maritime Pressure aims to persuade Chinese leaders that attempting military aggression in the Western Pacific will fail, thus discouraging them from trying it. The strategy uses the geography of the First Island Chain—the barrier formed by Japan, Taiwan, the Philippines, and maritime and peninsular Southeast Asia—to deny Chinese military supremacy within, and constrain China’s access beyond, the Western Pacific during crisis or war. Specifically, it aims to thwart Chinese sea control, air superiority, and information dominance, conditions viewed by Chinese leaders as essential to military victory, in order to reduce the Chinese leadership’s confidence in its ability to control the course and outcome of a future conflict, thus bolstering deterrence. In short, by creating doubt in the minds of Chinese leaders about the prospects of a fait accompli gambit, Maritime Pressure discourages them from attempting it in the first place.

As a defense-oriented denial strategy, Maritime Pressure can complement or substitute for alternative approaches such as blockade operations or punishment strikes against mainland China. Those alternatives, although potentially useful as part of a broader campaign to prevail in a protracted conflict with China, would likely not achieve success rapidly enough to thwart a fait accompli, and could escalate the conflict beyond the risk tolerances of U.S. and allied political leaders. Without a strategy designed to prevent a fait accompli, the United States might lose a war before alternative approaches have time to be effective. At a minimum, Maritime Pressure could buy the United States and its allies time, creating the space for other approaches to take effect.

Inside-Out Defense as a Point of Departure Operational Concept

A strategy of Maritime Pressure requires a supporting operational concept that can balance the need to respond rapidly enough to offset the U.S. military’s time-distance challenge without having to physically concentrate U.S. forces on a small number of large, close-in bases that are highly vulnerable to China’s robust area denial capabilities. That is, the operational concept must allow the U.S. military to create the virtues of mass rapidly without the vulnerabilities of concentration.

Inside-Out Defense combines lethal and resilient “inside” forces able to fight and persist within highly contested environments with agile “outside” forces capable of fighting from standoff distances or penetrating A2/AD networks. Together, these inside and outside forces could create a responsive, yet survivable, forward defense-in-depth in the Western Pacific capable of rapidly blunting Chinese aggression at the outset of a conflict. To use a football analogy, the inside forces would act as a defensive line while the outside air and naval forces acted as linebackers. While China may control the snap count, the “Inside-Out Defense” concept will demonstrate that the U.S. is ready to play.

Figure 1: Inside-Out Defense Overview (CSBA Graphic)

Inside forces: Below the level of armed conflict, inside forces forward postured in the Western Pacific would provide a persistent, combat credible signal of U.S. commitment, which should give Chinese leaders pause by complicating their decision calculus and undermining their confidence in their military plans. In the event of conflict, they would exploit the region’s maritime geography and assume a dispersed, resilient posture along the First Island Chain to form an initial defensive barrier that could immediately challenge Chinese military operations and play three key roles. First, they would contest what Chinese doctrine has identified as necessary prerequisites for conducting a successful military campaign: air superiority, sea control, and information dominance. Second, they would attack Chinese power projection forces to delay and deny their ability to achieve objectives through aggression, such as seizing the territory of U.S. allies or partners, while blocking China from projecting power beyond the First Island Chain. Third, they would degrade key Chinese systems to create gaps in China’s A2/AD networks that outside forces could then exploit.

Mobile and dispersed ground forces—and amphibious forces ashore—would form the backbone of these inside forces. Leveraging the inherent survivability of mobile, hard-to-find ground forces augmented with counter-detection aids, such as camouflage, concealment, and deception (CCD), the inside forces would transform the First Island Chain’s archipelagos into defensive bastions bristling with multi-domain capabilities such as sensors, missiles, and electronic warfare systems. Undersea platforms, both manned and unmanned, could operate within or near the East China Sea and South China Sea to augment these island bastions as part of the inside forces.

Outside forces: Primarily consisting of air and naval surface forces, outside forces would provide a flexible and agile element to support the units arrayed along the First Island Chain. The overwhelming mass of U.S. combat power would reside in these outside forces. In the event of conflict, they would back up the defensive barrier and provide defense-in-depth in the Second Island Chain. If necessary, they could surge forward to plug any gaps in the defensive barrier of inside forces created either by lack of U.S. access to allied or partner territory or through attrition from Chinese attacks. By employing standoff and penetrating capabilities, these outside forces could exploit gaps in the Chinese A2/AD complex created by the inside forces in order to augment defensive operations with additional mass and conduct offensive operations. Outside forces could also leverage their greater freedom of maneuver to conduct other priority missions, such as holding Chinese overseas assets at risk or interdicting Chinese maritime commerce.

Lines of Operation

Sea denial: From distributed positions along the First Island Chain, ground forces equipped with launchers capable of firing ASCMs or anti-ship ballistic missiles (ASBMs) could attack Chinese surface ships, creating gaps in China’s outer defenses that outside air and surface forces could then exploit. Undersea forces, including both manned and unmanned platforms, could augment inside ground forces by acting as forward sensors and conducting torpedo and ASCM strikes against Chinese ships, as well as provide the principal method of defeating Chinese undersea forces within the First Island Chain. Surface combatants, 4th generation fighters, and legacy bombers, operating over ground-based air defense bubbles along the First Island Chain, could also support sea denial operations with long-range ASCMs. Other stealthy platforms could operate forward to conduct maritime strikes and act as sensors for land-based missiles. Equipping distributed ground forces with a family of missiles with greater ranges than ones they currently possess (Figure 2) would hedge against more restrictive access for U.S. forces on allied and partner territory, enable ground forces to attack PLAN forces operating closer to China and in the Taiwan Strait, and provide more robust fields of overlapping anti-ship fires.

Figure 2: Overlapping Coverage of Ground-Based Sea-Denial Systems1 (CSBA graphic)

Air denial: Given the long operating distances from airbases primarily located in the Second Island Chain and beyond, U.S. and coalition forces would not be able to continuously contest air superiority in the conflict area. An improved land-based integrated air and missile defense (IAMD) architecture positioned along the archipelagoes of the First Island Chain could help pick up the slack. It would consist of a layered defense of mobile, long-range, wide-area, and short-range point air defense systems employing a mix of missiles, guns, and directed energy capabilities such as lasers and high-power microwaves. Additionally, ISR platforms and fighters partially sheltered behind land-based integrated air defense systems on the First Island Chain could enhance battlespace awareness and plug limited gaps in the air defense perimeter. Penetrating manned and unmanned fighters could also conduct periodic sweeps to contest Chinese air operations.

Information denial: The PLA views information dominance as the most critical condition necessary for victory. As such, counter-C4ISR and information denial operations could have outsized effects in deterring and, if necessary, defeating Chinese aggression. Information denial operations would focus on complicating Chinese ISR, increasing demands for persistent targeting, disrupting communications networks, and ultimately paralyzing China’s centralized decision making. Both inside and outside forces could employ a variety of land-attack, anti-ship, and anti-air weapons to strike Chinese sensors and key nodes to degrade its C4ISR networks. Forces employing electronic warfare, counter-space, and cyber capabilities, augmented by CCD and tactical mobility, could confuse remaining sensors, degrade communications, and overwhelm Chinese information processing and decision-making.

Land attack: Land attack operations would degrade Chinese land-based A2/AD systems—including command and control nodes, sensors, long-range missile launchers, aircraft on the ground, and SAM systems—to create gaps that outside forces could exploit. As with sea denial operations, land-based strikes could be augmented by land-attack cruise missile strikes delivered by submarines, outside air and naval forces conducting standoff attacks with long-range missiles, and stealth aircraft staging attacks from closer in. Now unconstrained by the INF Treaty, the U.S. could regain land-based long-range strike capabilities, forcing China to devote more resources to air and missile defenses. Although not always cost-effective for delivering large salvos, they have considerable value in promptly striking time-sensitive targets such as aircraft on the ground, missile launchers, massed formations, capital ships in port, and critical C4ISR nodes.

Figure 3: Land-Based Long-Range Strike2 (CSBA graphic)

Preserving C4ISR: Attacking China’s C4ISR architecture alone would be insufficient to gain and maintain allied information advantage in a Western Pacific contingency. The U.S. military would also need to preserve friendly C4ISR in the face of Chinese counter-C4ISR capabilities. The U.S. military should thus seek to improve the resiliency of its C4ISR architecture to mitigate the impact of Chinese attacks. But given China’s vast and sophisticated counter-C4ISR capabilities, the U.S. military likely could not prevent disruption or even temporary denial of its networks. Therefore, the U.S. military must be careful not to build an overly centralized theater battle network that must be protected from any significant degradation to function. Rather, the U.S. military should accept that highly contested and degraded information environments will be the norm in future warfare. As such, the U.S. military should develop a C4ISR architecture built for sub-optimal conditions that leverages the inherent strength of the joint force to overcome adversity. In short, the U.S. military should confront China’s highly centralized system designed to operate under the optimal conditions of information dominance with a more resilient U.S. C4ISR system able to continue fighting despite the chaos of the modern battlefield.

Defending forces and bases: Since U.S. forces cannot perfectly hide or defend against China’s planned precision strikes, they must withstand the initial salvo. Hardening key nodes such as communications hubs, fuel stores, and aircraft shelters would help improve resiliency and increase the number of Chinese munitions required to suppress targets. Dispersal of ground and air forces to numerous locations along the First and Second Island Chains would minimize the loss of any large single location. Properly networked, these positions would be mutually reinforcing. Adopting an air defense concept focused on short-and medium-range (10–30 nm) engagements could give defenders greater capacity at less cost. Mobile, distributed launchers such as HIMARS and trailer-mounted containerized launchers would practice disaggregation, tactical mobility, and CCD while operating under IAMD to degrade enemy targeting.

Figure 4: Measures to Improve Resiliency of Inside Forces (CSBA graphic)

Sustaining forces: Inside-Out Defense would require sustaining highly geographically distributed forces operating in austere environments, all while under attack. Ground forces arrayed along the archipelagos of the First Island Chain would leverage pre-positioned stocks of munitions and supplies. Later, combinations of small air and sea assets could work together to resupply and add mobility to these small, dispersed formations. For example, in the near term, offshore support vessels could provide logistical support. In the future, extra-large UUVs—with a payload capacity of 2,000 cubic feet—could transport roughly eight tons of cargo to units operating near the coastline.3 Unmanned surface vessels and dracones could provide additional attritable cargo transport and refueling capabilities. From the air, rotary wing and tactical transport aircraft could operate from austere airfields and sea bases to transport cargo and assist with moving troops.

Recommendations and Costs

Having outlined the Inside-Out Defense concept, CSBA also assessed the current activities of U.S. and allied forces to illuminate where changes are needed most urgently. The report divided the assessment and recommendations into concepts, capabilities, and coordination to reflect Maritime Pressure’s emphasis on the United States pursuing countermoves in the areas of doctrine, technology, and allies, respectively.4 The report estimates that these actions would cost from $8 billion to $13 billion by 2024 depending on the specific investments selected by DoD. Although significant, such costs are affordable—especially if DoD spends less on legacy forces unsuited to contested environments and spends more on the innovative concepts and capabilities proposed in the report.

Concepts

Develop this report’s approach into a joint operational concept to support a strategy of Maritime Pressure in the Western Pacific. Over the last several years, the Army, Navy, Marine Corps, and Air Force have developed new warfighting concepts that fit comfortably within a strategy of Maritime Pressure. While the Army’s Multi-Domain Operations, Navy’s Distributed Maritime Operations and Marine Corps’ Marine Corps Operating Concept, and the Air Force’s Multi-Domain Command and Control each break some new ground, the services still devote too much attention to preserving the traditional American approach to power projection in the Western Pacific. Furthermore, service concept development efforts are relatively disjointed and uncoordinated from one another, and joint operational concept development is currently lacking within DoD.

Experiment with new organizational structures for ground forces in the Pacific. Given that it is forward stationed in the Western Pacific, III MEF and its subordinate units could form the core of the inside forces in an Inside-Out Defense concept. III MEF would also likely need to be augmented as inside forces with U.S. Army units located in the Pacific Theater such as the 25th Infantry Division. However, both formations are maneuver warfare-centric organizations best suited for traditional amphibious or ground combat operations. The Marine Corps and Army should experiment with alternative force designs that take advantage of novel combinations of C2, fires, air defense, security, ISR, engineering, electronic warfare, and sustainment capabilities to permit distributed, multi-domain fires in highly contested environments along the First Island Chain.

Develop sustainment concepts to support a Maritime Pressure strategy. Supporting distributed operations along the First Island Chain requires new concepts for sustaining operations across great distances while under attack. Planners should explore innovative approaches to support distributed units, including greater use of pre-positioned stocks of munitions and sustainment materiel, manned and unmanned air and sea assets for mobility and resupply, and emerging technologies such as 3D printing to fabricate replacement parts.

Capabilities

Accelerate fielding of mobile, land-based, long-range missile capabilities. Ground force contributions to sea denial, air denial, and land attack operations along the First Island Chain require sharper and longer teeth. Current efforts of the Army and Marine Corps to develop and field longer-range, land-based anti-ship and land-attack fires should be accelerated and should incorporate weapons with ranges in excess of 500 km. The Army and Marine Corps should also develop more mobile and longer-range land-based air defense systems to provide wide-area air denial along the First Island Chain with sufficient survivability for inside forces to fight and persist within China’s A2/AD network.

Build a resilient multi-domain C4ISR architecture and develop and field counter-C4ISR capabilities. In a future conflict in the Western Pacific, the battle for information advantage would likely be critical and could potentially prove decisive. The U.S. military should undertake efforts to make its C4ISR architecture more resilient while developing and fielding active and passive counter-C4ISR capabilities such as jammers and CCD.

Integrate all bomber aircraft with payloads for offensive maritime missions. DoD should integrate anti-ship missiles into its entire fleet of bombers. Although anti-surface warfare would be a new mission for these platforms, it would be a return to a role the bomber community played during World War II and the Cold War. These capabilities are currently being fielded with several aircraft such as the B-1B, but integrating them with all platforms possessing comparable ranges would give the United States a more robust capability to attack enemy surface combatants and other high-value maritime targets in highly contested environments at range.

Coordination

Deepen cooperation with Indo-Pacific allies and partners. Allies and partners will be critical in a Maritime Pressure strategy, both in terms of accessing their territory and the capabilities and forces they contribute. The U.S. military should engage closely with Indo-Pacific allies and partners to form enhanced access agreements for both peacetime and war, as well as gain a better understanding of what roles each ally and partner may be willing to perform and with what forces in each potential contingency. The U.S. military should also work to deepen interoperability and developed combined concepts of operations among U.S. and allied and partner forces, particularly with Japan and Australia.

Reexamine Service roles and missions. As new concepts for warfighting in the Western Pacific continue to mature, so too should existing Service roles and missions. For example, Inside-Out Defense envisions both Army and Marine forces playing a larger role in anti-surface warfare missions. But key questions remain, such as whether they would provide similar or distinct capabilities for those missions and whether they would perform the missions in separate or overlapping geographic areas. Answering questions like these will help harmonize ongoing efforts to develop new concepts and capabilities across the services.

Consequences

Attempting to overcome these American A2/AD investments will likely push China toward prioritizing short-range counter-A2/AD improvements over long-range power projection investments. Such an outcome would appeal to the United States and its allies since it would keep China ensnared in its maritime backyard within the First Island Chain. Alternatively, China might view popping the American A2/AD bubble as too risky and expensive and, as a result, shift attention and resources away from its eastern maritime frontier to its western land frontier. President Xi Jinping has increased Chinese involvement in continental Asia through his Belt and Road Initiative, so Maritime Pressure might reinforce an existing preference within the Chinese government for westward expansion. On the negative side, Maritime Pressure might encourage China to escalate horizontally by shifting the competition to other domains, including the economic or diplomatic spheres. Despite this risk, a Maritime Pressure strategy represents a feasible, affordable, and sophisticated approach for responding to China’s rise in the years ahead.

Peter Kouretsos is an Analyst at the Center for Strategic and Budgetary Assessments. He is the co-author, with Thomas G. Mahnken, Travis Sharp, and Billy Fabian, of Tightening the Chain: Implementing a Strategy of Maritime Pressure in the Western Pacific.

References

1. Ranges and their proxies in parentheses serve as examples, not as specific recommendations. With additional cooperation from partner governments, similar systems could also be placed elsewhere (e.g., Vietnam and Indonesia). NSM, Type-12, and SM-6 ranges are from IHS Jane’s. PrSM range is from Jen Judson, “U.S. Army to Prioritize Long-Range Missile Capability to Go After Maritime Targets,” Defense News, March 26, 2019, available at https://www.defensenews.com/digital-show-dailies/global-force-symposium/2019/03/26/army-to-prioritize-long-range-missile-capability-to-go-after-maritime-targets/. LRASM range is from Oriana Pawlyk, “Live LRASM Test from F/A-18 Super Hornet Expected This Year,” DoDBuzz, April 10, 2018, available at https://www.military.com/dodbuzz/2018/04/10/live-lrasm-test-f-18-super-hornet-expected-year.html. Tomahawk range is from “Tomahawk Cruise Missile,” U.S. Navy factsheet, April 26, 2018, available at www.navy.mil/navydata/fact_display.asp?cid=2200&tid=1300&ct=2.

2. Past CSBA wargames used a notional target set depicting the depth and concentration of Chinese military facilities, mobile weapons systems, airbases, and other sites of military value. Approximately 70 percent of the target set’s 50,000 aimpoints are located within 250 nm of the coastline of mainland China. The deepest aimpoints (red circles) indicate locations of known or suspected space installations, anti-satellite weapons sites, and other high-value targets.

3. The United States only intercepts 25 percent of the homemade submarines carrying narcotics across the Caribbean into the United States from Colombia. Logisticians should incorporate lessons gleaned from these smuggling operations into future sustainment concepts for heavily monitored and contested environments. Joe Gould and David B. Larter, “In America’s Opioid Crisis, Military Lets Drug Shipments Go By,” Defense News, February 15, 2018, available at https://www.defensenews.com/congress/2018/02/16/in-americas-opioid-crisis-military-lets-drug-shipments-go-by/

4. The current activities assessment is limited primarily to the missiles and sensors the authors recommend fielding in precision-strike networks along the First Island Chain. The authors acknowledge that the networks would contain many capabilities besides missiles and sensors. They also recognize that prevailing against China will require more than precision-strike networks. Previous CSBA research has explored other necessary capabilities in detail; interested readers should consult those studies for more information. For the present section, however, the authors have chosen to focus on the strike forces forming the backbone of a Maritime Pressure strategy.

Featured Image: A Japan Ground Self-Defense Force Type 12 Surface to Ship Missile System display its range of movement as part of the Orient Shield 2019 media day, Sept. 17 2019, Oyanohara Training Area, Japan. (U.S. Army Photo by Staff Sgt. Jacob Kohrs, 20th PAD)

Undersea Surveillance: Supplementing the ASEAN Indo-Pacific Outlook

By Shang-su Wu 

The recently announced Indo-Pacific Outlook by the Association of Southeast Asian Nations (ASEAN) at the 34th Summit indicates the Southeast Asian perspective on the evolving geostrategic environment. Unsurprisingly, ASEAN highlights cooperation, stability, peace, freedom of navigation and other values in the statement. The Outlook, however, leaves a question: how will ASEAN protect these values when diplomatic measures fail?

Under the ASEAN way, it would not be realistic to expect strong words such as those implying the use of force in any official statement, but member countries bordering critical straits could indirectly convey the message by demonstrating relevant defense capabilities. Among a variety of defense capabilities, tracking foreign submarines through enhanced undersea surveillance could be a relevant option.

Tracking Submarines

The major strategic significance of Southeast Asia in the Indo-Pacific region is mostly found in several critical sea lanes where various powers’ military assets travel through channels connecting the two oceans. Under the United Nations Convention on the Law of the Sea (UNCLOS), military vessels and aircraft enjoy the right of innocent passage through these sea routes, whether classified as international straits or archipelagic waters, and coastal countries track these movements. Modern technology makes it feasible for coastal states to readily track foreign military aircraft and surface vessels, a task that is more about safety than security. But tracking submerged submarines is another matter with a much higher barrier to entry.

In the face of complicated hydrographic conditions along with the improving stealth of submarines, there are high requirements for detection in terms of sonars, training, joint operations, and other elements of undersea surveillance. Therefore, successfully tracking submarines requires a high degree of military professionalism and capability. But once successfully tracked and trailed, a submarine receives a clear but private message of deterrence.

Silent Deterrence

This kind of covert deterrence would fit the geopolitical context in Southeast Asia. Firstly, it is generally legitimate for a littoral state to detect underwater entities because submarines should sail on the surface during innocent passage in territorial waters, while a submerged transit is acceptable under UNCLOS in passing sea routes and international straits. But only when a littoral state can identify the locations of foreign submarines transiting underwater can it determine whether UNCLOS is violated or obeyed. In other words, Southeast Asian countries have a sovereign right and legal obligation toward undersea surveillance. 

Tracking submerged submarines also presents a credible level of readiness for uncertainty. Overt exercises can be tailored for specific scenarios to prove certain levels of joint operations and other tactical skills, while bilateral and multilateral exercises highlight partnership, alliance, and other interstate security ties. Exercises are often much broader than the single capability of tracking submarines. Exercises, however, are either fully or semi-planned, and tracking foreign submarines is a truly dynamic encounter between two sides without an advance arrangement. Furthermore, Southeast Asian countries already have routinely conducted various bilateral and multilateral exercises with regional and extra-regional counterparts.

Tracking submerged submarines is usually beyond the microscope of conventional and social media, and can avoid the open hostility or other forms of public outcry that often transpire after close encounters between surface vessels. As the detecting side can deny any information on the tracking, publicity of the event would be more controllable compared with open statements or actions. For the country of the tracked submarine, such encounters are usually negative for national pride and military professionalism, so decision-makers would not have much incentive for revealing the encounter.  

Improving Hardware and Challenges Ahead

Since the end of the Cold War, Southeast Asian navies, particularly those of Indonesia, Malaysia, and Singapore, have built up their anti-submarine warfare (ASW) capabilities, including through several types of undersea sensors. These three countries have acquired survey vessels to establish their individual hydrographic databases. They have also procured state-of-the-art anti-submarine warfare helicopters such as the Super Lynx, S-70B, and AS-565MBe and deployed them on their respective frigates and corvettes which have towed or hull-mounted sonars. Furthermore, all three navies possess submarines to play the role of targets during training.

SOUTH CHINA SEA (June 18, 2013) A Royal Malaysian Navy Super Lynx prepares to land on the flight deck of USS Freedom (LCS 1) during deck landing qualifications (DLQs). (U.S. Navy photo by Mass Communication Specialist 1st Class Cassandra Thompson/Released)

Some characteristics impose challenges on the ability of Southeast Asian countries to track submarines. Large areas of territorial waters are natural obstacles for Malaysia and Indonesia. The numbers of maritime survey vessels they have in service are rather small for accumulating and updating their hydrographic data. By the same token, these two countries’ sensors and platforms, including ASW helicopters or ships, are likely not numerous enough to cover their broad territories or responsively deploy to where contacts are found.

Thanks to its tiny size, Singapore’s assets cannot be geographically diluted, but it shares other constraints with its neighbors, including a lack of fixed-wing ASW aircraft. The Indonesian CN-235 and the Singaporean Fokker-50 maritime patrol aircraft (MPA) only have limited ASW capabilities, and Malaysia’s smaller Beech-200 MPAs have no payload space for ASW weapons. Finally, operational experience is another common challenge for these three countries, as they began to introduce their sophisticated ASW assets mainly in the post-Cold War era where opportunity for practice was slim. 

Currently, the three navies are on a trajectory of improving their ASW capabilities, such as through the towed sonar arrays found in Malaysia’s upcoming frigates and Indonesia’s plan of building underwater surveillance systems. These efforts would gradually make tracking foreign submarines underwater more feasible in the foreseeable future.

Conclusion

Unlike in the Cold War-era, some Southeast Asian countries, especially these three bordering critical straits, do not have empty arsenals. Although their defense capability is still inferior to most extra-regional powers, some wise and tailored applications of their military assets would support ASEAN agenda’s beyond diplomatic and economic means. Successful tracking foreign submarines would make the ASEAN Outlook more valid in the Indo-Pacific geostrategic landscape.

Shang-su Wu is a research fellow at the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University in Singapore.

Featured Image: A Chinese submarine transits in the Yellow Sea (Wikimedia Commons)

No Free Ride in the Pacific: The Case for Investing in Mobility

Countering China Topic Week

By Walker Mills

In recent years the Pentagon has doubled down on a Pacific focus. It has published a new Pacific strategy and the individual services have been burning the midnight oil to write their own new concepts oriented around the Pacific.1 The Navy has released its classified new concept Distributed Maritime Operations,2 the Army has its Multi-Domain Operations concept,3 and the Marines are still working on Expeditionary Advanced Base Operations.4 All three concepts are predicated on an ability to maneuver through and within the First Island Chain. They assume the future operating environment will be heavily contested and involve threatened areas much farther from the central battlefields than the military has experienced in recent decades. In his recent planning guidance, the new Commandant of the Marine Corps warned:

“Potential adversaries intend to target our forward fixed and vulnerable bases, as well as deep water ports, long runways, large signature platforms, and ships…The ability to project and maneuver from strategic distances will likely be detected and contested from the point of embarkation during a major contingency.”5

Notably, this would negatively impact logistics and sustainment operations across the Pacific theater, and not just at the bleeding edge of the combat zone.

All the concepts seek to leverage distribution and rapid maneuver – whether through distribution of austere bases, task forces, or naval vessels. While they are intended to be broadly applicable the concepts are optimized for operations in the Western Pacific to counter a rising China and her military. Essential to all of these concepts is intra-theater mobility – moving lethality to the decisive point, but it has yet to be addressed in a meaningful way in acquisition and modernization priorities. The services have poured much needed resources into platforms and systems that can kill and destroy, but they have neglected to invest in operational mobility.

It does not appear that U.S. allies and partners in the region have the stomach for a larger basing footprint that would allow forces to be permanently or rotationally based forward. This begs the question – who is doing mobility and logistics? How will Army and Marine Corps advances in lethality actually reach a far-flung Pacific battlefield? How would the “forward deployment of multiple High-Mobility Artillery Rocket System (HIMARS) batteries armed with long-range anti-ship missiles” that Commandant Berger envisions actually happen in a contested environment?6

Shortfalls in Pacific Mobility

Today the intra-theater mobility requirement is largely filled by Expeditionary Fast-Transports (EFPs). These aluminum, double-hulled vessels are relatively new to the fleet but have been a continual disappointment. They have not been able to meet critical requirements for ship-to-ship transfers of supplies.7 They have sustained hundreds of thousands of dollars of damage in trans-oceanic voyages, voyages they would be needed for in a conflict.8 They have been plagued by maintenance issues. And perhaps worst, they have trouble operating in the open ocean because of the higher sea states there. An Operational Test and Evaluation Report concluded “The necessity of avoiding high sea states while transiting is an operational limitation that could be significant.” And “To utilize the speed capability of the ship, seas must not exceed Sea State 3 (significant wave height up to 1.25 meters).”9 A Department of Defense Inspector General report found 28 total deficiencies with the vessels in levels ranging from minor to severe, which means the deficiency in question “Precludes mission accomplishment.”10 The report found more than half of these deficiencies were either related to the vessels ability to meet cargo carrying requirement or network with the fleet – probably the two most important capabilities for the platform’s success.

Designed for inshore transport, the EFPs had been used successfully as short-haul commercial ferries between the Hawaiian Islands before the design was chosen by the Navy. But they are largely unsuitable for longer trips, like the nearly 1,600-kilometer trip between Okinawa and Tokyo, or the 1,700-kilometer trip between Okinawa and Manila, or the similarly lengthy trip to Guam. Today many of these trips are made by air or by Marines embarked on large, amphibious ships like the America class which may be too vulnerable and valuable to operate inside an enemy anti-access, area-denial envelope (A2/AD). The demand for these amphibious ships far outstrips the supply. Despite a longstanding (but recently waived) requirement of 38 amphibious ships set by Marine Corps leaders, the Navy’s current shipbuilding plan will not reach that number until 2033 or perhaps ever.11 Other sources, like the Heritage Foundation have argued that the requirement is as high as 45 amphibs.12 The Marine Corps went so far as to note this in their 2016 Marine Operating Concept that “We will likely continue to fall short of the number of amphibious warfare ships to meet CCMD operational demands…”13 Other transport programs like the Navy’s Common Hull Auxiliary Multi-Mission Platform (CHAMP), are still in the concept stages are likely fall in priority to other Navy programs because they are auxiliaries.14

KUCHING, Malaysia (March 28, 2019) The Military Sealift Command expeditionary fast transport ship USNS Fall River (T-EPF 4) arrives at the Port of Kuching for Pacific Partnership 2019. (U.S. Navy photo by Mass Communication Specialist 2nd Class Nicholas Burgains/Released)

A new platform for intra-theater mobility can share some of the burden carried by the larger amphibious ships.

Intra-theater mobility is critical to future Marine and Army operations. Littoral Operations in a Contested Environment specifically calls for the capability “…to employ scalable landing forces using a variety of platforms including amphibious ships as well as alternative capabilities…”15 But the short list of available platforms makes clear that this is not possible without acquiring new platforms or significantly modifying existing platforms. Seconding this sentiment, Commandant Berger noted in his planning guidance that:

“Our naval expeditionary forces must possess a variety of deployment options, including L-class and E-class ships, but also increasingly look to other available options such as unmanned platforms, stern landing vessels, other ocean-going connectors, and smaller more lethal and more risk-worthy platforms…We must also explore new options, such as inter-theater connectors and commercially available ships and craft that are smaller and less expensive, thereby increasing the affordability and allowing acquisition at a greater quantity.”

This specific capability gap is in addition to the yawning general capability gap the Navy is facing in logistics and sealift capability. A recent report by the Center for Strategic and Budgetary Analysis made clear their belief that the Navy and associated institutions were woefully deficient in sealift capability in the opening sentence of their report, “The current and programmed defense maritime logistics force of the United States is inadequate to support the current U.S. National Defense Strategy and major military operations against China or Russia.”16 Specifically the roll-on/roll-off (RO/RO) ships that Marines forces rely on to move tanks, light armored vehicles, HIMARS, and logistics vehicles in bulk are plummeting below acceptable readiness. “…even with service-life extension funding for 22 ships… 30 of 65 RO/RO vessels could age out within the next 15 years.”17 It is also worth noting that this scathing assessment did not even consider the potential requirements for emerging Marine Corps concepts requiring greater dispersion.

It would be negligent not to note the role of Marine and Air Force airlift – critical in moving around forces in theater, but it is not nearly enough. Not only are the available air transport options questionably survivable in the projected operating environment, but there are just not enough of them to do the whole job. Recall the infamous Millennium Challenge event where retired Marine General Paul Van Riper’s red force would have massacred the blue forces arriving on waves of rotary-wing aircraft.18 It is also likely that much of the extant airlift capacity would be tied up supporting expeditionary airfields per the Marines’ EABO concept or the Air Force’s “Rapid Raptor” concept leaving little to ferry ground forces.19

Other voices have also called for plugging the maneuver gap in the Pacific with new surface vessels. Douglas King and Brett Friedman recently called for a “Fighting Connector” in War on the Rocks that:

“…would use sea lines of communication to fill the gap between amphibious assault ships, sea-based assets, and Expeditionary Advance Bases (EABs) until shore-based threats are reduced. The size of the fighting connector would be in the range of sloop or small corvette class ships, displacing roughly 500 to 2,000 tons — a step or two smaller than the littoral combat ship.”20

A recent study by the Heritage Foundation noted “The Corps must work with the Navy to develop smaller, lower-cost ships that are better suited to the type of dispersed operational posture implied by LOCE.”21 And the Marine Corps itself has noted that it is deficient across the range of capabilities required to perform EABO. The authors of the 2016 Marine Corps Operating Concept summarized:

“The Marine Corps is currently not organized, trained, and equipped to meet the demands of a future operating environment characterized by complex terrain, technology proliferation, information warfare, the need to shield and exploit signatures, and an increasingly non-permissive maritime domain.”22

The Marines and the Army are investing in much needed, new ground vehicles and long-range, precision-fires capabilities essential for contributing to sea control or sea denial from the landward side of the battlefield. But the Navy and Air Force have also prioritized offensive systems like the FFG(X) and the F-35 programs. Even the Marines’ new CH-53K, ideally suited for moving vehicles, cannot cover the distances required by the theater with an external load.

Conclusion

This issue of lift is existential for Army and Marine operations in the Pacific. The theater is massive – in many cases hundreds or thousands of miles away from U.S. installations. The Marine Corps intends to distribute its forces widely, and has already begun. There is a new rotational force in Darwin, Australia, and a plan to move forces to Guam from Okinawa. This is good news, but these far-flung garrisons need platforms that can move them rapidly and in a survivable way to where they are needed in conflict. And these platforms need to be able to carry the gear essential to sea control like HIMARS rockets and G/ATOR radars, not just grunts.

If the United States wants to compete, deter, and win in a potential conflict its military needs to be able to move troops around the theater in question at will. To do this will require a reallocation of acquisition priorities and investments.

Walker D. Mills is an active duty Marine Corps infantry officer. He is currently studying Spanish at the Defense Language Institute. These views are presented in a personal capacity.

References

[1] Indo-Pacific Strategy Report: Preparedness, Partnerships and Promoting a Networked Region. Department of Defense (Washington, D.C.: 2019) https://media.defense.gov/2019/Jul/01/2002152311/-1/-1/1/DEPARTMENT-OF-DEFENSE-INDO-PACIFIC-STRATEGY-REPORT-2019.PDF.

[2] Megan Eckstein, “Navy Planning for Gray-Zone conflict; Finalizing Distributed Maritime Operations for High-End Fight,” USNI News (December 19, 2018) https://news.usni.org/2018/12/19/navy-planning-for-gray-zone-conflict-finalizing-distributed-maritime-operations-for-high-end-fight.

[3] “The U.S. Army in Multi-Domain Operations 2028,” TRADOC Pamphlet 525-3-1, U.S. Army (2018) https://www.tradoc.army.mil/Portals/14/Documents/MDO/TP525-3-1_30Nov2018.pdf.

[4] “EABO,” Marine Corps Warfighting Lab, webpage. Accessed July 15, 2019, https://www.candp.marines.mil/Concepts/Subordinate-Operating-Concepts/Expeditionary-Advanced-Base-Operations/.

[5] “Commandant’s Planning Guidance: 38th Commandant of the Marine Corps,” U.S. Marine Corps (2019) 1-4.

[6] “Commandant’s Planning Guidance,” 3.

[7] Brock Vergakis, “Report: Navy Ship Designed for Fast Transport Has Problems,” Military.com (28 April, 2018) https://www.military.com/daily-news/2018/04/28/navy-ship-designed-fast-transport-has-problems-report-says.html.

[8] Nick Stockton, “Yar! The Navy is Fixing Its Busted High-Speed Transport Ships,” Wired Magazine (January 20, 2016) https://www.wired.com/2016/01/yar-the-navy-is-fixing-its-busted-high-speed-transport-ships/.

[9] “Follow-on Operational Test and Evaluation (FOT &E) Report on the Joint High Speed Vessel (JHSV),” memo (September 22, 2015) https://news.usni.org/wp-content/uploads/2015/10/9-22-15-Follow-On-Operational-Test-and-Evaluation-FOTE-Report-on-the-….pdf#viewer.action=download.

[10] “Expeditionary Fast Transport Capabilities,” Inspector General of the Department of Defense (April 25, 2018) 6-7. https://www.oversight.gov/sites/default/files/oig-reports/DODIG-2018-107.pdf.

[11] Dakota Wood, “Rebuilding America’s Military: The United States Marine Corps,” The Heritage Foundation (March 21, 2019) 39.  https://www.heritage.org/defense/report/rebuilding-americas-military-the-united-states-marine-corps.

[12] “U.S. Navy” The Heritage Foundation (October 4, 2018) https://www.heritage.org/military-strength/assessment-us-military-power/us-navy.

[13] “Marine Corps Operating Concept: How an Expeditionary Force Operates in the 21st Century,” U.S. Marine Corps (September 2016) 20. https://www.mcwl.marines.mil/Portals/34/Images/MarineCorpsOperatingConceptSept2016.pdf

[14] Megan Eckstein, “Navy Wants 2 Variants Next Common Auxiliary Hull: One for People, One for Volume,” USNI News (January 16, 2019). https://news.usni.org/2019/01/16/navy-wants-2-variants-next-common-auxiliary-hull-one-people-one-volume.

[15] “Littoral Operations in a Contested Environment,” U.S. Marine Corps (2017)17. https://news.usni.org/2017/09/26/document-marine-corps-littoral-operations-contested-environment-concept.

[16] Timothy A. Walton, Harrison Schramm and Ryan Boone, “Sustaining the Fight: Resilient Maritime Logistics for a New Era,” Center for Strategic and Budgetary Analyses (April 23, 2019) i. https://csbaonline.org/research/publications/sustaining-the-fight-resilient-maritime-logistics-for-a-new-era/publication.

[17] Ibid., 85.

[18] Micah Zenko, “Millenium Challenge: The Real Story of a Corrupted Military Exercise and Its Legacy,” War on the Rocks (November 5, 2015) https://warontherocks.com/2015/11/millennium-challenge-the-real-story-of-a-corrupted-military-exercise-and-its-legacy/.

[19] Blake Mize, “Rapid Raptor: getting the fighters to the fight,” U.S. Air Force Public Affairs (February 20, 2014) https://www.pacaf.af.mil/News/Article-Display/Article/591641/rapid-raptor-getting-fighters-to-the-fight/.

[20] Douglas King and Brett Friedman, “Why the Navy Needs a Fighting Connector: Distributed Maritime Operations and the Modern Littoral Environment,” War on the Rocks (November 10, 2017) https://warontherocks.com/2017/11/navy-needs-fighting-connector-distributed-maritime-operations-modern-littoral-environment/.

[21] Wood, “Rebuilding America’s Military,” 40.

[22] “Marine Corps Operating Concept,” 8.

Featured Image: EAST CHINA SEA (Feb. 4, 2019) – Marines assigned to the 31st Marine Expeditionary Unit (MEU) board an MV-22 Osprey assigned to the “Flying Tigers” of Marine Medium Tiltrotor Squadron (VMM) 262 aboard the amphibious assault ship USS Wasp (LHD 1) prior to flight operations. (U.S. Navy photo by Mass Communication Specialist 1st Class Daniel Barker)