Category Archives: Capability Analysis

Analyzing Specific Naval and Maritime Platforms

Time to Re-Task, Downsize, and Re-Engineer the SSN, Part 1

By Duane J. Truitt

The U.S. Navy is faced with several big challenges in maintaining undersea warfare dominance – the domain of the fast attack nuclear submarine or “SSN.”

These challenges include the reemergence of a near peer naval threat that is a direct challenge to the entire U.S. Navy, including our SSN force. The current and growing undersea threat includes both advanced technology attack submarines (including nuclear, diesel-electric, and air independent propulsion variants) with advanced torpedoes and cruise missiles, and much increased numbers of adversary submarines, particularly in the Indo-Pacific theater. Another challenge comes from the rapidly escalating procurement and sustainment costs of ever-larger and more complex U.S. SSNs since the end of the Cold War.

These two challenges have resulted in a very large immediate deficit in U.S. SSN numbers,1 if not capabilities, that is expected to continue for decades. The Navy’s current planned way out seems to be to simply hope for the best, that the funding will materialize to build many more of today’s very large and expensive SSNs. That plan is increasingly seen as unlikely if not impossible given existing serious constraints on U.S. defense spending.

This situation is not unique to the submarine force. The Navy’s overall force structure assessment (FSA) is undergoing a significant revision due for release later this year.2 Navy leaders including outgoing CNO ADM John Richardson and VADM Bill Merz have stated on multiple occasions that the surface fleet is going to evolve with many more small surface combatants, with enhanced capabilities, and many fewer large surface combatants. Admiral Merz stated:

“You may see the evolution over time where frigates start replacing destroyers, the Large Surface Combatant starts replacing destroyers, and in the end, as the destroyers blend away, you’re going to get this healthier mix of small and large surface combatants.”

What is driving this mix to an overall surface fleet weighted toward smaller vessels? Cost. The cost to build, and then the cost to operate and maintain vessels is necessitating this shift from the current generation of surface warships dominated by large surface combatants. The same cost factors also inhibit submarine construction and operations, too. This is in fact a rebalancing in the age-old naval argument of capability versus capacity. The rebalancing is made possible by emerging technologies that allow the Navy to package enhanced capability into smaller hull forms, and to take advantage of new capabilities in cheap yet capable unmanned vessels. Yet today, the U.S. Navy still has no “small subsurface combatant” – just the very large Virginia-class SSNs that are evolving into even larger and more expensive hulls with the Block 5 and subsequent block versions.

The U.S. has relied on its total undersea dominance for nearly three decades since the collapse of the Soviet Union, but that dominance is already fading, and is projected to flip upside down within the next decade. While perversely, due to the projected retirement of the rest of the aging Los Angeles-class SSNs, U.S. submarine forces will continue to fall over the same period, from 51 boats today to a projected 42 within a decade. The principle reason for the inability to build and operate the much larger SSN fleet of 66 subs that the Navy now says it needs is lack of funding. Some suggest that the answer is extending the service lives (SLEPing) of the Los Angeles-class boats, but that is not a practical solution, even in the short term, let alone the long term, since the maintenance burden for very old submarines is much higher than for new vessels. SLEPing old SSNs would only exacerbate the existing near-crisis of maintaining our these SSNs in operable condition.

Some say our small SSN fleet size is also due to a lack of “industrial capacity,” but the ability of the United States of America to ramp up its industrial capacity in times of severe military need is clearly proven in actual U.S. history throughout both World War Two, and during the long Cold War. If the funds to build all the subs that we need are actually made available, American industry will almost certainly respond, and ramp up accordingly, as proven time and time again. Make the construction dollars available on a predictable, multi-year contracting basis, and existing yards will open new lines, and/or new yards will be built, workers trained, and supply chains expanded.

In the 1960s through the mid-1970s there were six U.S. shipyards building SSNs and SSBNs, and in just 13 years of production the yards produced 39 boats, an average of three per year while at the same time producing 31 boats in multiple classes of Polaris and Poseidon SSBNs over just a five-year period. That came to on average of more than nine nuke submarines delivered per year at its peak in the mid-1960s.

As to the dollars needed for an expanded SSN fleet, the current full construction cost of a Virginia-class Block 5 SSN with Virginia Payload Module (VPM) stands at $3.2 billion in 2018 dollars. For comparison, the Sturgeon class-SSNs were built in the late 1960s for approx. $130 million each – in 2019 dollars that would be approximately $726 million – about a fourth of the cost of a Block 5 Virginia boat.

These behemoth Block 5 Virginia SSNs, at approximately 10,000 tons submerged, are more than twice the displacement of Cold War SSNs in the Skipjack-class, Permit-class, and the numerically large Sturgeon-class boats (4,300 tons submerged displacement). And to make matters more challenging, current naval plans for the next generation SSN, now dubbed “New SSN”3 suggest an even larger attack submarine, perhaps 12,000 tons and likely to cost $4 billion to $6 billion or more in 2018 dollars (and not entering the fleet for a decade or more) to build, and similarly expensive to operate. The Seawolf-class of SSNs were of approximately the same displacement, and the very high cost associated with building and operating the Seawolf SSNs encouraged limiting the class of boats to three hulls after the end of the Cold War.

The attack submarine Seawolf (SSN-21) conducts her first at-sea trial operation, following her early morning departure 3 July 1996, from the Naval Submarine Base, Groton, Conn. (General Dynamics photo)

Note that not only does raw displacement drive up the construction cost of a SSN (the rule of thumb is you pay for ships by the ton), but it also drives up the lifetime operating costs of the SSN. Manning a Block 5 Virginia-class SSN with its 42 vertical launch cells requires a crew of approximately 140 officers and sailors, as compared to the  99 officers and sailors of a Sturgeon-class SSN. 

So why are the current class American SSNs so large?

The answer includes land attack – the new mission assigned to SSNs by the Navy in the aftermath of the end of the Cold War, with the virtually overnight disappearance of its main naval adversary, the Soviet Navy. By the early to mid 1990s the U.S. Navy was busy retiring aged-out Cold War boats by the dozens and was still building as replacements the last Los Angeles-class SSNs. These boats were larger than their predecessors, primarily to make them faster and capable of keeping up as escorts with CVN carrier battle groups and later on, carrier strike groups. Such high cruising speeds were not a requirement for anti-shipping warfare (both ASW and anti-surface ship) and ISR – the two primary missions of Cold War era SSNs.

Later on, the more advanced Virginia SSNs – as a smaller, cheaper, and slightly reduced capability version of the small class of Seawolf SSNs – came along by the mid-2000s, adding length, tonnage, and  vertical launch tubes capable of putting up as many as 12 Tomahawk missiles (a similar vertical launch tube arrangement by then had also been added to some of the last Los Angeles-class boats). However, those post-Cold War Tomahawks on SSNs were not, like their Cold War predecessors, equipped to engage moving naval targets as long range anti-ship missiles, but instead were Tomahawk Land Attack Missiles (TLAM), capable only of engaging fixed land targets. The Navy was also busy deploying large numbers of TLAMs on large surface combatants, both Ticonderoga-class cruisers and Arleigh Burke-class destroyers, for the same deep strike land attack mission the Navy had taken on in the 1990s and beyond.

The latest Block 5 Virginias add a new “Virginia Payload Module” that adds yet another 84-foot section to the hull aft of the sail containing four more vertical launchers carrying as many as 28 additional TLAMs for land attack. The stated purpose of the VPM was to attempt to make up for the planned retirement of four SSGNs (converted Ohio-class SSBNs that were “denuclearized” per the START strategic nuclear arms reduction treaty). But of course that conversion of SSBN to SSGN was a “make work” solution for the resulting excess Ohio SSBNs above treaty limits, which has now begat a “make work” mission for SSNs. All of which bloats the boat itself and makes it much more expensive to build and operate.

Adopting the deep strike land attack mission was an understandable response to the drastic and virtually overnight elimination of a significant near peer naval threat in the 1990s. Thus the Navy and its supporters in Congress converted the navy virtually overnight to a deep strike land attack force in order to become more relevant to evolving national security interests, but at the expense of full-spectrum competence. Otherwise, naval leaders and proponents feared an even more drastic fleet reduction than the 50 percent cut that was actually made after the end of the Cold War.

This “keep the Navy relevant in the Post Cold War era” mindset was also aided and abetted by the Intermediate Range Nuclear Forces (INF) Treaty of 1987 limits on “land based” intermediate range cruise missiles (IRCM) that strangely did not apply to “surface launched” (i.e., naval platforms). (Both the U.S. and Russia have now withdrawn from this treaty, effective later this year.) In any event, INF encouraged both the Russian and U.S. navies to deploy large numbers of land attack cruise missiles on surface warships.

Clearly a lot has changed since the Post Cold War-era began. The U.S. military today is no longer simply tasked with combating low-capability insurgent forces in various and sundry developing nations often situated well inland, nor does the INF treaty apply as of this year either.

With the well-documented fast growing maritime threat posed especially by China (whose fleet of attack submarines is currently estimated to number over 70 vessels, and is expected to continue to grow at a rapid rate thereafter), as well as a resurgent Russian Navy, the world of naval warfare has now transformed from a low threat environment into a serious challenge to U.S. naval dominance. The U.S. Navy now has a clear and overriding mission – to deter and if necessary fight and win a naval war against capable near peer forces. Projecting sea power ashore continues as a U.S. Navy mission, but that mission is best and most cost-effectively performed by naval aircraft (both carrier-based and land-based), not by submarines. Given all of the above factors, then, and the fact that naval shipbuilding budgets are constrained, including demands to simultaneously recapitalize aging CVNs and Ohio-class SSBNs, the Navy must go back to the drawing boards.

Chairman of the Joint Chiefs of Staff Adm. Mike Mullen visits the Chinese People’s Liberation Army-Navy submarine Yuan at the Zhoushan Naval Base in China on July 13, 2011. (DoD photo by Mass Communication Specialist 1st Class Chad J. McNeeley/Released)

The Navy should consider designing a new SSN that is smaller and cheaper, and focused entirely on the anti-shipping and ISR roles – the historic roles of the SSN throughout the Cold War – with particular attention paid to building and operating many more new boats at a far faster build rate.

Size as measured in tons displacement, however, is not the only requirement and means of controlling cost – there is also the matter of modernization and capability.  Obviously the technologies available today are far more advanced compared to those available in the 1960s and 1970s when the bulk of our Cold War era SSN fleet was built. For example, the later generations of U.S. submarines incorporated new propulsors – pump jets, rather than the older and noisier seven-bladed open screws on the Cold War era boats. Better sensors are also going into today’s boats, both sonars and “above the water” sensors, with photonic masts rather than periscopes, which allows more efficient interior hull design and better distribution of sensor data to various locations within the crew area. Better electronic warfare capabilities are also part of today’s fleet, and cyber warfare is increasingly a key area of focus in the 21st century.

Better weapons are also available today, although advancements in deployed submarine-launched weaponry have clearly lagged behind both our adversaries and even of USN surface forces and naval air wings in recent years. Existing SSNs are still using the old Mk 48 ADCAP 21-inch torpedo first deployed in the mid-1970s, though significantly upgraded over the decades. But as of today the only submarine-launched anti-ship cruise missile available is still the old Harpoon Block 1C that was developed in the 1970s, and as of today only one of our existing SSNs has even re-integrated the Harpoon, as of last year. A new “Maritime Strike Tomahawk” refit kit is slated to become available in 2021 which will provide a new very long range ASCM capability to both submarines and surface warships with VLS. Perhaps other existing ASCMs such as the new Naval Strike Missile, now slated for deployment on LCS and FFGX, can and may also be integrated onto U.S. submarines, along with LRASM in the coming years.

Additionally, it should also be recognized that for purposes of anti-submarine warfare which was the primary role of the Cold War SSN, and which is now becoming a priority again, the Mk48 ADCAP torpedo is likely “overkill” for use against submerged submarines. The power of a 650 pound warhead on the Mk 48 certainly is helpful for attacking large surface ships, with the ability to literally break a ship in half when detonated under the keel. Submerged submarines, however, do not require such explosive power because of the effect of submergence sea pressure.

The lightweight ASW torpedoes such as the Mk 46 and Mk 54 (12.75 inches diameter by 8 feet 6 inches long, and weighing just 508 pounds vs. 21 inches, 19 feet, and 3,695 pounds respectively for a Mk 48) have for decades been in use by the US Navy and our NATO allies deployed on surface warships and ASW aircraft. The lightweight torpedoes have warheads with weights of slightly less than 100 pounds – demonstrably sufficient to sink a submerged submarine. Indeed, one of the most effective ASW weapons in WWII, the “hedgehog,” had a much smaller warhead of just 35 pounds of TORPEX. It was demonstrated that typically only one or two hedgehog detonations were needed to sink a submerged submarine.

An exercise Mark 54 Mod 0 torpedo is launched from the U.S. Navy Arleigh Burke-class guided-missile destroyer USS Roosevelt (DDG-80). (U.S. Navy Photo by Mass Communication Specialist 2nd Class Justin Wolpert)

Therefore, the Navy needs to give strong consideration to adapting existing lightweight ASW torpedoes to our next generation of SSNs. Doing so would facilitate the ASW capability of our SSNs while significantly increasing the sub’s capacity to store and deploy much smaller torpedoes. Not as a total replacement for the Mk 48, but rather, as a supplement to the Mk 48 to enable much larger total magazine depth without increasing the displacement of the submarine, to accommodate the ability to attack both surface ships and submarines. Instead of just four 21-inch torpedo tubes on a Virginia-class boat, a combination of 21 inch and 13 inch horizontal tubes optimized for a typical mission profile could work very well.

Finally, whatever combination of horizontal tubes and torpedoes is determined optimal, the weapons themselves need to continue to be updated to the latest technological capabilities as to sensors, self-contained computing (and artificial intelligence) as necessary to track and target submarines and defeat enemy countermeasures, and improved warheads. Hard kill anti-torpedo torpedoes as well as other torpedo countermeasures are also a prime area of development that needs to continue, despite a recent setback with the CAT weapon systems deployed on CVNs.

Nuclear propulsion technology is also advanced today over the old Cold War power plants. The latest generation of naval nuclear reactors as used on the new Ford class CVNs known as the A1B reactor are much more automated and simplified than the previous plants, allowing the highly trained and certified nuclear plant operator crew size to be cut in half as compared to the 1960s era reactors of the Nimitz class CVNs.4 Even more revolutionary nuclear power plant designs are going to be available to submarine designers in the next decade.

Similar technological opportunities abound to more heavily automate every work process throughout the next generation submarines, including artificial intelligence capabilities, and thus can significantly reduce overall crew manning requirements in a submarine. This has already been achieved on the latest surface combatants including the Ford CVNs and the Zumwalt DDGs, which respectively achieved overall manning reductions of 33 percent and 50 percent over their predecessor classes. A similar reduction in SSN crew size also ought to be achievable using the same design approaches and modern automation technology. Reductions in crew size also lead to reductions in hull volume.

Additional technology “insertions” are also available in other areas of submarine design that should be able to create significant impacts in both cost reduction as well as improving the capabilities of our next gen SSNs.

Conclusion

In consequence of all of the considerations described above, it is clear that NAVSEA needs to undertake a project to re-engineer the next generation of SSNs. Navy leadership has publicly stated its intent to reconfigure the surface fleet to significantly reduce the ratio of large surface combatants (LSCs) to small surface combatants (SSCs). The Navy now needs to similarly reconfigure the SSN fleet in favor of smaller boats optimized for sea control over long-range land attack. They must reject the bloated SSN(X) concept which is more of the same, but bigger and more expensive, and go for a new class of SSN that is far smaller and cheaper and thus affordable in much larger numbers than currently planned submarines. 

Mr. Truitt is a veteran Cold War-era SSN sailor, qualified nuclear reactor operator, and civilian nuclear test engineer. He is also a degreed civil engineer, environmental scientist, and civil/environmental project manager with extensive experience at both naval and civilian nuclear facilities as well as military and civilian facilities development. His interest today as an author is in forward-looking military preparedness and improvements in both capacity and capability of U.S. naval forces.

Notes

1. USNI News, Ben Werner, March 27, 2019: “Indo-PACOM Commander Says Only Half of Sub Requests are Met”

2. USNI News, Megan Eckstein, April 8, 2019: “Navy Sees No Easy Answer to Balance Future Surface Fleet”.

3. USNI News, Megan Eckstein, May 13, 2019: “Virginia Block VI Subs Will Focus on Special Operations, Unmanned”

4. A1B Reactor; https://www.globalsecurity.org/military/systems/ship/systems/a1b.htm

Featured Image: YOKOSUKA, Japan (Sept. 3, 2010) The Virginia-class attack submarine USS Hawaii (SSN 776) transits Tokyo Bay on the way to Fleet Activities Yokosuka, marking the first time in the history of the U.S. 7th Fleet that a Virginia-class submarine visited the region. This is Hawaii’s first scheduled deployment to the western Pacific Ocean. (U.S. Navy photo by Lt. Lara Bollinger/Released)

Turkish F-35s – Where Do We Go From Here?

By Jon G. Isaac

A Transatlantic Standoff

In January, CIMSEC published an article in which the author advocated against Turkey’s ongoing participation in the development, manufacture, and eventual purchase of the F-35 Lighting II. Broadly, as January’s piece noted, debate over Ankara’s eventual acquisition of the F-35 has come as a result of Turkish President Recep Tayyip Erdoğan’s insistence upon purchasing and operating the Russian-made S-400 Triumf  air defense missile system (NATO reporting tag: SA-21 Growler). As lawmakers on the hill and Department of Defense leaders have warned, connection or even close operation between Lockheed Martin’s 5th generation fighter and the Russian air defense system represents a critical security breach which could undermine the aircraft’s operational advantage in the future.

Despite months of warning and posturing which signaled to Ankara that acquisition of the S-400 would jeopardize the future of the Turkish F-35 fleet, Turkish officials have repeatedly emphasized that cancellation of the S-400 purchase is “out of the question.” American officials have attempted to provide counter offers, most notably through a discounted sale of the American-made MIM-104 Patriot surface-to-air missile system. None of the attempts at mediation have worked, with the Turkish Minister of Foreign Affairs, Mevlüt Çavuşoğlu, stating emphatically that Turkish purchase of the S-400 “is a done deal.”

As a result, on April 1st, the Department of Defense confirmed a Reuters report that stated the Pentagon was halting shipments of critical parts and equipment required for the stand-up for Turkey’s first F-35 squadron. In the piece, Reuters quotes DoD spokesman Lieutenant Colonel Mike Andrews and notes that, “pending an unequivocal Turkish decision to forgo delivery of the S-400, deliveries and activities associated with the stand-up of Turkey’s F-35 operational capability” have been delayed indefinitely. This was the Pentagon’s first major move in countering Turkish obstinance.

Complicating matters further, Senator Jim Inhoff (R-OK), Jack Reed (D-RI), Jim Risch (R-ID), and Bob Menendez (D-NJ), Chairman and Ranking Members of the Senate Armed Services and Senate Foreign Relations Committees, respectively, published an op-ed in The New York Times which explicitly forces Turkey to choose between the F-35 and the S-400. Barring a Turkish decision to drop the S-400, they write, “no F-35s will reach Turkish soil” and “sanctions will be imposed as required by United States law under the Countering America’s Adversaries Through Sanctions Act (CAATSA).” Secretary of State Pompeo supported these remarks on Wednesday when he told the Senate Foreign Relations Committee that there would be no Turkish F-35s if they do not abandon the S-400. Curiously, Secretary Pompeo stopped short of definitively stating whether or not Turkish S-400 acquisition would trigger American sanctions as required by law under CAATSA. While Pompeo’s hesitance may have only been an attempt to keep all options open, it could also have links to Minister Çavuşoğlu’s ardent claims that President Trump personally assured Erdogan that he would “would take care of this issue” in reference to the F-35.

Where Do We Go From Here?

It appears, for now, that Ankara faces a choice. In Washington, legislative efforts to bar sales of the F-35 to Turkey seem to have garnered bipartisan support and congressional support. In Ankara, Erdogan leveraged the S-400 issue at almost all of his campaign rallies leading up to the March 31st Turkish elections. Elections which, coincidentally, took a toll on Erdogan’s AKP party on the local level. Nevertheless, Erdogan has continued to posture surrounding the S-400 issue, with the European Council on Foreign Relation’s Asli Aydıntaşbaş writing that Erdogan has seemingly adopted the issue as “a sign of his virility, his independence, his power on the world stage that he could say no to [the] United States.”

Internally, it seems that there are those among Erdogan’s staff who believe the Americans are bluffing and that both systems will eventually solidify themselves in the Turkish arsenal. They are not entirely helpless, either, with American basing rights at the critical Incirlik Air Base standing as a potential bargaining chip for Turkish negotiators. Turkish negotiators face a hard battle, however, as the Pentagon has said it is already looking for alternatives to the F-35 parts currently made in Turkey.

This standoff has not only placed pressure on the Turkish-U.S. relationship, but moreover is raising questions about Ankara’s standing within NATO as a whole. Rick Berger, a former Senate Budget Committee staffer and current researcher at the American Enterprise Institute has noted that this flashpoint has repeatedly brought up, “the whole ‘Should Turkey be in NATO?’ question.” Moreover, the NATO countries that operate the F-35 have internally expressed concern over interoperability with Turkish airframes should they link to the S-400. At a time when Russian President Vladimir Putin has regularly engaged in policies aimed at destabilizing the transatlantic alliance, perhaps the Turkish F-35 crisis presents not just a commercial or political threat to the U.S.-Turkey relationship, but a strategic threat to NATO as a whole.

Jon Isaac is a pseudonym for a developing security analyst.

Featured Image: An F-35B Lightning II performs a vertical landing aboard Marine Corps Air Station Beaufort. (Flickr/U.S. Marine Corps/Cpl. Jonah Lovy)

Accelerating the Renaissance of the U.S. Navy’s Amphibious Assault Forces 

Unmanned Maritime Systems Topic Week

By George Galdorisi

Perspective

The United States has entered an era of great power competition against peer adversaries who are seeking to shape the world to their needs and upset the global international order.1 This challenge is addressed in the highest levels of U.S. policy documents, from Global Trends: Paradox of Progress, to the National Security Strategy, to the National Defense Strategy. Indeed, the National Defense Strategy explicitly calls for the United States to “Build a More Lethal Force” to deal with these threats.”2

The U.S. Navy and Marine Corps are critical components of this more lethal force. As the Navy’s Design for Maintaining Maritime Superiority 2.0 (Design 2.0) notes, “The U.S. Navy must be ready to conduct prompt and sustained combat incident to operations at sea.” Design 2.0 also calls for “Deepening integration with our natural partner, the U.S. Marine Corps.”3 As Brigadier General Christian Wortman, Commanding Officer of the Marine Corps Warfighting Lab, noted at the recent USNI/AFCEA West Symposium “We are back and completely integrated with the Navy.”4

This call for enhanced Navy-Marine Corps integration comes at a time when, in the words of a former Marine Commandant, “The Marine Corps is returning to its amphibious roots,”5 and when the demand for amphibious forces is at a high level. As Ryan Hilger noted in his recent CIMSEC article, “Ground Component Commanders (GCCs) continue to signal a demand for amphibious forces, reaching high enough to justify 40 amphibious ships required to meet requested presence requirements.”6

This sea change in U.S. strategic focus comes at a time of accelerating technological change. As Michelle Flournoy, former undersecretary of defense for policy, noted recently, “We are in the most intense technological revolution the world has ever seen.”7 Today, one of the most rapidly growing areas of innovative technology adoption by the U.S. military involves unmanned systems. In the past several decades, the U.S. military’s use of unmanned aerial vehicles (UAVs) has increased from only a handful to more than 10,000, while the use of unmanned ground vehicles (UGVs) has exploded from zero to more than 12,000.

The use of unmanned surface vehicles (USVs) and unmanned underwater vehicles (UUVs) is also growing, as USVs and UUVs are proving to be increasingly useful for a wide array of military applications. The expanding use of military unmanned systems (UxS) is already creating strategic, operational, and tactical possibilities that did not exist a decade ago.

America’s Amphibious Assault Forces: Leading a Paradigm Shift

Last summer, the Smithsonian Channel featured a series, “The Pacific War in Color.” One part of this program told the story of amphibious assaults on Japanese-held islands, such as Iwo Jima, Okinawa, Tarawa, Peleliu, and others. These assaults involved armadas of amphibious ships and hundreds of landing craft that were part of each forcible entry operation. In each case, the attacking force faced significant opposition getting Marines onto the beach.

Aerial raw footage of the 1945 Iwo Jima landings (Romano Archives)

In the post-Cold War era, amphibious assault forces have not been the most capable part of the U.S. Navy. In the years after 9/11—while the Marine Corps was engaged in Iraq and Afghanistan and not primarily embarked on amphibious ships—the amphibious assault fleet was, at best, an afterthought. Today, as the United States faces a plethora of threats across the globe, there is a new emphasis on amphibious warfare.

According to Lieutenant General David Berger, commander of the Marine Corps Combat Development Command, and nominee to be the next Commandant of the Marine Corps, “We need to be prepared for large-scale amphibious operations. We might do it differently in the future, but we can’t ignore it.”8

For decades, when a crisis emerged anywhere on the globe, the first question a U.S. president often asked was, “Where are the carriers?” Today, that question is still asked, but increasingly, it has morphed into, “Where are the expeditionary strike groups?” The reason is clear. These naval expeditionary formations—built around a large-deck amphibious assault ship, an amphibious transport dock, and a dock landing ship—have been the ones used extensively for a wide array of missions short of war, from anti-piracy patrols, to personnel evacuation, to humanitarian assistance and disaster relief. And where tensions lead to hostilities, these forces are the only ones that give the U.S. military a forcible entry option.

U.S. naval expeditionary forces have remained relatively robust even as the size of the Navy has shrunk from a high of 594 ships in 1987 to 272 ships in 2018. Naval expeditionary strike groups comprise a substantial percentage of the current fleet. Indeed, the blueprint for the future fleet the Navy is building, as seen in a recent Congressional Research Service report, maintains—and even increases—that percentage.9

An article in Marine Corps Gazette highlighted Marine Corps thinking on future amphibious assault operations:

“While forcible entry operations are often thought of exclusively in terms of initiating a continental campaign, an application some analysts assume to be unlikely, it may be more probable in the 21st century that they are conducted as part of a joint campaign that is maritime in character. It ought to be self-evident from looking at a map that military competition in the near seas will involve an amphibious component—to include amphibious assault when and where required.”

The Gazette article goes on to note that “a film about a modern amphibious operation would likely be boring, as there would be no dramatic scenes of large units fighting their way across a heavily defended beach.”10

Navy and Marine Corps expeditionary forces have been proactive in looking to affordable new technology to add capability to their existing and future ships. One of the technologies that offers the most promise in this regard is unmanned systems. These unmanned systems can reduce the risk to human life in high-threat areas, deliver persistent surveillance over areas of interest, and provide options to warfighters—particularly given their ability to operate autonomously.

 The U.S. Navy’s commitment to unmanned systems is seen in the Navy’s Force Structure Assessment, as well as in a series of Future Fleet Architecture Studies. In each of these studies—one by the CNO staff, one by the MITRE Corporation, and one by the Center for Strategic and Budgetary Assessments—the proposed future fleet architecture featured large numbers of air, surface, and subsurface unmanned systems.11 These reports highlight the fact that the attributes unmanned systems can bring to the U.S. Navy Fleet circa 2030 have the potential to be transformational.

One of the major challenges to the Navy and Marine Corps to making a substantial commitment to unmanned maritime systems is the fact that they are relatively new and their development has been under the radar for all but a few professionals in the research and development, requirements, and acquisition communities. That is now changing. The Department of Defense 2017-2037 Unmanned Systems Roadmap highlights a large number of Navy and Marine Corps unmanned systems, particularly unmanned maritime systems (USVs and UUVs).12

Design 2.0 has clearly articulated the importance of unmanned systems to the Navy and Marine Corps future warfighting effectiveness. The publication’s “Line of Effort Green: Achieve High Velocity Outcomes,” demonstrates the Navy’s commitment to making unmanned systems a key component of the future fleet, highlighting air, surface and subsurface unmanned systems.13 Additionally, this commitment to unmanned systems programs is reflected in program documents such as the 2018 Navy Program Guide and the 2018 Marine Corps Concepts and Programs.

The Navy and Marine Corps have taken the lead in orchestrating an unprecedented number of exercises, experiments, and demonstrations to introduce new, cutting edge technologies—especially unmanned maritime systems—into the Fleet and Fleet Marine Forces. Many of these technologies are mature commercial off-the-shelf systems that are currently being used for other military and commercial applications. These events have put new technology directly into the hands of Sailors and Marines and have accelerated the amphibious force renaissance.

Testing and Evaluating Unmanned Systems

During the recent USNI/AFCEA “West” Symposium, Chief of Naval Operations Admiral John Richardson noted, “Our strategic Achilles Heel is our inability to get new technology into the hands of our warfighters fast enough.”14 This is especially true with emerging technologies that are revolutionary—not merely evolutionary.

As with many novel naval technologies: ironclads, submarines, aircraft, nuclear power, directed-energy weapons, as well as others, is it typically not the most prominent communities where this experimentation takes place, but rather, in those parts of the Navy and Marine Corps that have traditionally been out of the spotlight and who need a technology boost. Today, it is the amphibious assault Navy that has been notably proactive in experimenting with emerging unmanned systems.

The Navy and Marine Corps have a number of ways to test and evaluate unmanned maritime systems. While some of this testing and evaluating—especially in the early stages of unmanned maritime systems development—occurs at industry facilities or at U.S. Navy laboratories, once these systems are more mature, they are fielded in a wide-array of Navy and Marine Corps events in the operational environment where they will ultimately be used. Brigadier General Wortman emphasized this point during the USNI/AFCEA Wes” Symposium where he noted, “We need to do more Fleet and MEF level exercises.”15

As the Department of the Navy has become increasingly interested in unmanned maritime systems, this testing and evaluating has accelerated in a number of exercises, experiments and demonstrations, such as the Ship-to-Shore Maneuver Exploration and Experimentation (S2ME2) Advanced Naval Technology Exercise (ANTX), the Surface Warfare Distributed Lethality in the Littoral Demonstration, and the Navy-Marine Corps Bold Alligator series of exercises.

The Ship-to-Shore Maneuver Exploration and Experimentation Advanced Naval Technology Exercise is a prime example of the Department of the Navy’s push to test and evaluate unmanned maritime systems. S2ME2 ANTX was especially important to the Navy and Marine Corps as the amphibious ship-to-shore mission is one of the most challenging tasks the military must undertake.

Due to the enormous stakes involved in putting troops ashore in the face of a prepared enemy force, S2ME2 ANTX had a heavy focus on unmanned systems—especially unmanned surface systems—that could provide intelligence, surveillance, and reconnaissance (ISR) as well as intelligence preparation of the battlespace (IPB). These are critical missions that have been traditionally been done by Sailors, Marines, and Special Operators, but ones that put these warfighters at extreme risk.

There is growing realization of the need to insert new technology to make the amphibious assault force more effective in the face of robust adversary defenses. In an address at the 2018 Surface Navy Association Symposium, Marine Corps Major General David Coffman, Director of Expeditionary Warfare (OPNAV N95), noted the need to make U.S. Navy amphibious ships, “More viable, lethal and survivable, with a focus on command, control, communications, computers, cyber and intelligence (C5I).”16 Clearly, the ISR and IPB missions depend on these capabilities, and it is unmanned systems that can provide this function without hazarding personnel.

During the S2ME2 ANTX the amphibious assault force proactively employed an unmanned surface vehicle to thwart enemy defenses. A MANTAS USV (an eight-foot version of a family of stealthy, low profile, USVs) swam into the “enemy” harbor (the Del Mar Boat Basin on the Southern California coast), and relayed information in real-time to the amphibious force command center using its TASKER C2 system. Subsequent to this ISR mission, the MANTAS USV was driven to the surf zone to provide IPB on water conditions, beach gradient, obstacle location and other information crucial to planners prior to a manned assault. 

Carly Jackson, Naval Information Warfare Center Pacific’s Director of Prototyping for Information Warfare and one of the organizers of S2ME2 ANTX, explained the key element of the exercise was to demonstrate new technology developed in rapid response to real world problems facing the fleet and noted that the exercise was focused on unmanned systems with a big emphasis on intelligence gathering, surveillance, and reconnaissance.17

In many ways, S2ME2 ANTX was a precursor to Bold Alligator, the Navy-Marine Corps exercise designed to enhance interoperability in the littorals. Bold Alligator was a live, scenario-driven exercise designed to demonstrate maritime and amphibious force capabilities. The 2nd Marine Expeditionary Brigade (MEB) led the exercise and operated from dock landing ships USS Fort McHenry (LSD-43) and USS Gunston Hall (LSD-44); amphibious transport dock USS Arlington (LPD-24).18

Bold Alligator took the concepts explored during S2ME2 ANTX to the next level, employing two different size (six-foot and twelve-foot) MANTAS USVs in the ISR and IPB roles to provide comprehensive reconnaissance of beaches and waterways. These systems were employed during the Long Range Littoral Reconnaissance phase of the exercise.

The 2nd Marine Expeditionary Brigade used the larger (twelve-foot) MANTAS USV, equipped with a Gyro Stabilized SeaFLIR230 EO/IR Camera and a BlueView M900 Forward Looking Imaging Sonar to provide ISR and IPB for the amphibious assault. This sonar was employed to provide bottom imaging and analysis within the surf zone of the amphibious landing area. This latter capability is crucial in amphibious operations in order to ensure that a landing craft can successfully enter the surf zone without encountering mines or other objects.

While S2ME2 was confined to a relatively constrained operating area off the coast of Southern California, Bold Alligator was played out over a wide geographic area. This included a Command Center at Naval Station Norfolk, Virginia, and operating units employing forces in a wide area of the Atlantic Ocean, North and South Onslow Beach, Camp Lejeune, North Carolina, as well as in the Intracoastal Waterway near Camp Lejeune.

During the Long Range Littoral Reconnaissance phase of Bold Alligator, Navy and Marine Corps operators at Naval Station Norfolk were able to remotely control both the six-foot and twelve-foot MANTAS USVs and drive them off North and South Onslow Beaches as well as in the Intracoastal Waterway. Once positioned, both MANTAS USVs streamed live, high-resolution video and sonar images to the command center at Naval Station Norfolk several hundred miles away.

The latter capability is crucial in amphibious operations in order to ensure that a landing or other craft could successfully navigate a waterway or enter the surf zone without encountering mines or other objects. Clearing a path for LCACs or LCUs to safely pass through the surf zone and onto the beach during an assault is a make-or-break factor for any amphibious operation. Having the ability to view these images in real-time enables decision makers not on-scene to make time-critical go/no go determinations. The value of providing commanders with real-time ISR and IPB is difficult to overstate, and it is likely that this capability will continue to be examined in other expeditionary exercises going forward.

Sustaining the Amphibious Assault Force Renaissance

The ship-to-shore movement of an expeditionary assault force was—and remains—the most hazardous mission for any navy.  The value of real-time ISR and IPB is difficult to overstate. It is this ability to sense the battlespace in real time that will spell the difference between victory and defeat.

For this reason, it seems clear that the types of unmanned systems the Department of the Navy should acquire are those systems that directly support naval expeditionary forces that conduct forcible entry operations. This suggests a need for unmanned surface systems to complement our expeditionary naval formations represented by the amphibious assault navy. These commercial off-the-shelf technologies are available today and the Department of the Navy would be well-served to put them into the hands of warfighters now.

Captain George Galdorisi (USN – retired) is a career naval aviator whose thirty years of active duty service included four command tours and five years as a carrier strike group chief of staff. He began his writing career in 1978 with an article in U.S. Naval Institute Proceedings. He is the Director of Strategic Assessments and Technical Futures at the Naval Information Warfare Center Pacific in San Diego, California. 

The views presented are those of the author, and do not reflect the views of the Department of the Navy or Department of Defense.

References

[1] Global Trends: Paradox of Progress (Washington, D.C.: National Intelligence Council, 2017), accessed at: https://www.dni.gov/index.php/global-trends-home.

[2] The National Defense Strategy (Washington, D.C.: Department of Defense, January 2018)

[3] Design for Maintaining Maritime Superiority 2.0 (Washington, D.C.: Department of the Navy, December 2018) accessed at: https://www.navy.mil/navydata/people/cno/Richardson/Resource/Design_2.0.pdf.

[4] Brigadier General Christian Wortman, panel remarks, USNI/AFCEA “West” Symposium, February 13-15, 2019.

[5] Otto Kreisher, U.S. Marine Corps Is Getting Back to Its Amphibious Roots, Defense Media Network, November 8, 2012, accessed at: https://www.defensemedianetwork.com/stories/return-to-the-sea/.

[6] Ryan Hilger, Cost and Survivability: Acquiring the Gator Navy,” Center for International Maritime Security, April 8, 2019, accessed at: https://cimsec.org/cost-and-survivability-acquiring-the-gator-navy/39784

[7] Michelle Flournoy, keynote remarks, Second Front “Offset Symposium,” March 5, 2019.

[8] Lieutenant General David Berger, keynote remarks, National Defense Industrial Association Expeditionary Warfare Conference, Annapolis Maryland, October 16-18, 2018.

[9] Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress (Washington, D.C.: Congressional Research Service, October 19, 2018).

[10] George Galdorisi and Scott Truver, The U.S. Navy’s Amphibious Assault Renaissance: It’s More than Ships and Aircraft,”  War on the Rocks, December 12, 2018.

[11] See Navy Project Team, Report to Congress: Alternative Future Fleet Platform Architecture Study, October 27, 2016, MITRE, Navy Future Fleet Platform Architecture Study, July 1, 2016, and CSBA, Restoring American Seapower: A New Fleet Architecture for the United States Navy, January 23, 2017.

[12] Department of Defense Unmanned Systems Integrated Roadmap 2017-2042 (Washington, D.C.: Department of Defense, August. 28, 2018).

[13] Design for Maintaining Maritime Superiority 2.0.

[14] Admiral John Richardson, Chief of Naval Operations, keynote address, USNI/AFCEA “West” Symposium, February 13-15, 2019.

[15] Brigadier General Christian Wortman USMC, Commanding Officer Marine Corps Warfighting Lab, Panel remarks, USNI/AFCEA “West” Symposium, February 13-15, 2019.

[16] Meagan Eckstein, “Navy, Marines Eyeing Ship Capability Upgrade Plans that Focus on Weapons, C5I,” USNI News, January 17, 2018, accessed at: https://news.usni.org/2018/01/17/navy-marines-eyeing-ship-capability-upgrade-plans-focus-weapons-c5i?utm_source=USNI+News&utm_campaign=3de4951649-USNI_NEWS_DAILY&utm_medium=email&utm_term=0_0dd4a1450b-3de4951649-230420609&mc_cid=3de4951649&mc_eid=157ead4942.

[17] Patric Petrie, “Navy Lab Demonstrates High-Tech Solutions in Response to Real-World Challenges at ANTX17,” CHIPS Magazine Online, May 5, 2017, accessed at http://www.doncio.navy.mil/CHIPS/ArticleDetails.aspx?id=8989.

[18] Information on Bold Alligator 2017 is available on the U.S. Navy website at: http://www.navy.mil/submit/display.asp?story_id=102852.

Featured Image: MARINE CORPS BASE HAWAII, Hawaii (April 9, 20190) A U.S. Marine Corps amphibious assault vehicle assigned to Combat Assault Company, 3d Marine Regiment, crashes into the tides as it enters the water during an amphibious assault exercise at Marine Corps Training Area Bellows, Marine Corps Base Hawaii, Apr. 9, 2019. The unit conducted a simulated beach assault to improve their lethality and cooperation, as a mechanized unit and force in readiness. (U.S. Marine Corps photo by Sgt. Alex Kouns)

Autonomous Pickets for Force Protection and Fleet Missile Defense

Unmanned Maritime Systems Topic Week

By 1st Lt. Walker D. Mills

As the U.S. Navy shifts to reprioritize great power competition in line with the 2018 National Defense Strategy, close-in missile defense has taken on new importance. It is estimated the People’s Liberation Army Rocket Force, the branch of the Chinese military equipped with short, medium, and long-range ballistic and cruise missiles has an arsenal of thousands of missiles. As of yet, only the more recent classes are known to have guidance for striking maritime targets, but that may change. In addition, the People’s Liberation Army Navy (PLAN) has surface vessels of all sizes with hundreds more anti-ship missiles. At the low end is the Type 22 missile boat with eight missiles, and at the high end is the new Type 055 with 112 vertical launch cells that can be loaded with a variety of ordnance. These new PLAN missile capabilities has produced palpable anxiety in the US defense establishment. Last week in a confirmation hearing for the future Commandant of the Marine Corps and Chief of Naval Operations, Senator Richard Blumenthal (D-CT) asked how the Navy was planning on dealing with the “great risk” to their surface fleet. He was not the only Senator to voice his concern. 

Though anti-ship missiles have not yet been used in in large-scale fleet combat, they have been used to deadly effect by aircraft and smaller surface combatants after their debut in the Yom Kippur War. All previous incidents also occurred in coastal or littoral waters. By all accounts, if and when large-scale, salvo-type fleet combat does occur, it will cause damage unseen since the large naval battles of the Second World War. In fact, there is perhaps no precedent for the destructive capacity of missile volleys except for the large-scale kamikaze attacks on the U.S. naval force during the battle of Okinawa.1 During the battle, hundreds of kamikazes were deployed and sunk over forty U.S. warships.2 Okinawa remains one of the costliest battles for the U.S. Navy in any conflict.

Kamikaze employment and tactics mirror what missiles salvos could look like today. The kamikazes were often based at austere airfields considered unsuitable for conventional operations, making them harder to identify by U.S. forces while also being low cost compared to the damage they could inflict.3 Toward the end of the war kamikaze pilots had mastered the use of terrain to mask their approach on U.S. radars – similar to low-level or sea-skimming flight in missiles today. They would approach from different directions and rapidly converge on suitable targets in waves as large as 300, maneuvering erratically to avoid anti-aircraft fire.4 Consider this description of a kamikaze attack on U.S. ships during the Battle of Okinawa from Robert C. Stern’s book Fire from the Sky:

“The enemy stayed low over the horizon to the west, out of sight of our radars and CAP… For a minute or two, every plane maneuvered for position in all quadrants and then, obviously on signal, a coordinated attack was launched.”5

 It has even been argued by naval historian D.M. Giangreco, that just before the end of the war the Japanese discovered that their wooden training planes didn’t show up on U.S. radars – they were essentially stealth weapons.6 Regardless, the Japanese thought the kamikaze squadrons were effective enough that they prepared the bulk of their remaining aircraft – some 10,500 – for kamikaze operations against any future U.S. landing on the Japanese home islands.7

The U.S. Navy responded to this threat with three main approaches. They expanded fleet formations and used destroyers and combat air patrols as pickets – often posting pickets as far as seventy-five miles out from the ships they were protecting. The Navy also employed new technology like radars and proximity-fuzed munitions, and massively proliferated anti-aircraft weapons across its ships.8 According to figures from Giangreco:

“By June 30, 1945, 2,381 twin mounts had been installed on Navy ships in the Pacific, and 10,180 single mounts remained throughout the fleet. The numbers of quad, double and single 40-mm mounts stood at 1,585, 3,045 and 510 respectively.”9

And he goes on to note that despite this massive proliferation of point defense weapons, Chief of Naval Operations Admiral Ernest King still considered his ships under-protected.

A Japanese Kamikaze attack on the USS Essex (CV-9) on 25 November 1944.

Together, these three lines of effort blunted the effectiveness of kamikaze attacks and helped defend the carriers and amphibious ships, but at a huge cost to the pickets, and even then, the defense was not impenetrable. Of the 41 ships sunk or damaged beyond repair in the Battle of Okinawa over half were destroyers or other escorts on picket duty and a further ten were minesweepers that had been sent to the picket role because of the high losses the pickets sustained.10 The pickets were effective, but at a huge cost to their crews. This response to kamikaze attacks provides a model for a response to the looming threat of anti-ship missiles. It is the best example of the U.S. Navy enduring a period of heavy and continuous missile salvo-like attacks in support of operations ashore.

Unmanned Systems for Fleet-Wide Missile Defense 

The merger of small and medium unmanned surface vessels (S/MUSVs) and extant close-in weapons systems can dramatically increase the survivability of the U.S. surface fleet. The Navy is already calling for the development and fielding of new USVs. The Navy is experimenting with the Sea Hunter MUSV and should be searching for potential roles beyond anti-submarine warfare (ASW). 

At the aforementioned confirmation hearing, future Chief of Naval Operations Admiral Bill Moran assured a questioning Senator Gary Peters (D-MI) that the Navy is rapidly moving forward on unmanned systems.

“…We need to get after [unmanned surface vehicles] so the we can experiment with these to test out the concepts that we believe they are capable of doing, looking at different types of capabilities to put on different types of these vessels…”

But overall, he expressed confidence that they could be the way forward for the surface fleet:

“Down the road if these capabilities prove out to be as effective as some other current manned capabilities then they would start to add to and compliment the manned platforms we have and be part of our battle force.”

In addition to ongoing ASW experiments, another beneficial use would be to mount one or more close-in weapons systems (CIWS) on the MUSV and have them act as pickets for other ships in the fleet. The Phalanx CIWS currently mounted on many U.S. ships is already completely autonomous. It fires a twenty-millimeter cannon at targets based on pre-programed parameters. These new pickets would be completely autonomous and require only human intervention for reloading, refueling, and maintenance. Originally intended as a long-endurance submarine hunter, the Sea Hunter platform would be ideal for picket duty. Autonomous pickets could accompany high-priority ships like aircraft carriers or amphibious ships during strait transits and high-risk movements. They could also defend ship-to-shore movements and beachheads against missiles, aircraft and small surface vessels depending on their programming. These autonomous pickets could also act as surge defense for key naval installations and other key maritime terrain. The point-defense capability that CIWS can provide is also a gap ashore with the Marine Corps. The Phalanx CIWS is a capable and versatile weapon system far better than the twenty and forty-millimeter Bofors guns used against Japanese aircraft and can now be upgraded to carry Rolling Airframe Missiles (RAM) which significantly increase their interception range. It has also been used to protect ships against close flying aircraft, small boats, and drones, further proving its versatility.

Pacific Ocean -The Close In Weapon System (CIWS) onboard Coast Guard Cutter BERTHOLF fires during Combat System Ship Qualification Trials on Feb. 23, 2009. (U.S. Coast Guard video/PA3 Henry G. Dunphy)

Autonomous pickets are not limited to just kinetic weapons. They could integrate directed energy weapons into their defensive capabilities as well, perhaps in a triad with gun and missile point defenses. They would also be ideal platforms from which to deploy softkill countermeasures like chaff, electronic warfare, jamming. They could be mounted with multi-spectrum decoys imitating larger ships to draw anti-ship missiles toward themselves and away from higher-value manned platforms.

Mounting autonomous platforms with defensive systems for force protection side-steps the significant ethical question of lethal autonomous platforms because the precedent has already been set. The Navy has already deployed the autonomous defensive systems like CIWS and Aegis for decades and can modify the engagement parameters  to fit any environment. Pursuing defensive, autonomous weapons for missile defense is a way to continue developing relevant and lethal weaponry without “taking the human out of the loop” for strike operations.

The biggest limitations of the weapons is their relatively short range – the twenty-millimeter cannons are limited to only a few thousand meters, and their limited magazine capacity. But both of these disadvantages can be offset by putting more of them on unmanned platforms further out from the fleet and mixing in missile, directed energy, and softkill countermeasures. Images of U.S. Navy ships late in the Second World War show ships that have anti-aircraft weapons on nearly every square meter of available deck space – and new classes of ships had even more gun mounts yet planned.

There is an inherent risk with the Navy’s classified new operational concept – Distributed Maritime Operations. Distributing combat power can reduce the ability of ships to mutually support each other and increases the risk to the force. More simply put – if vessels that are normally used to escort a carrier are sent farther away they have less of an ability to protect the carrier. The Navy can compensate for this by fielding autonomous picket ships – which are far cheaper than building more conventional vessels both in the initial purchase price and in sustainment costs because they have no crew. This type of lethal yet cheap and potentially sacrificial vessel is also what the Navy needs to compliment the new Littoral Combat Ships which have relatively poor organic defensive capability. USVs will prove key to operationalizing the DMO, and adding them to supplement the fleet precludes the need to add or upgrade the CIWS already mounted. Even a small number of autonomous pickets could be shared among the fleet – always protecting the most at risk assets, whether it be a capital ship, naval facility, or other key objective. Fortunately, there is evidence the Navy already understands the opportunity that is USVs. Defense News reported this week that the Navy has budgeted $2.7 billion for unmanned surface vessels over the next five years but that the Navy doesn’t know “…how it would introduce those technologies into a fleet that has for the most part fought the same way since the Cold War.” Autonomous pickets are one possible way.          

Conclusion 

In all cases, the ability to form a protective perimeter of unmanned systems beyond the edge of the fleet would significantly boost survivability and increase options for the fleet commander by lowering risk. A flotilla of autonomous pickets, armed with effective CIWS and multi-spectrum missile countermeasures, can function as a powerful yet affordable force multiplier. Such a force would provide the Navy with an increased ability to operate and project power inside an anti-access, area-denial (A2/AD) network and help the fleet weather storms of missile salvos. The methods of how the U.S. Navy adapted to the kamikaze threat in the Second World War provides an excellent case study for this concept and a strong argument for its implementation. As the Navy continues to experiment with new roles and missions for unmanned systems, unmanned force protection and missile defense is an ideal mission.

Walker D. Mills is an active duty Marine Corps infantry officer. He is currently studying Spanish at the Defense Language Institute in preparation for an exchange tour in Colombia. He has previously been deployed to the Western Pacific as part of the Marine Corps’ Unit Deployment Program. These views are presented in a personal capacity.

References

[1] Wayne P. Hughes, Fleet Tactics and Coastal Combat, The Naval Institute Press (Annapolis, MD: 2000) 167-168.

[2] D.M. Giangreco, Hell to Pay: Operation Downfall and the Invasion of Japan 1945-47, Naval Institute Press (Annapolis, MD: 2009)

[3] Ibid, 113.

[4] John Keegan, The Second World War, Penguin Books (New York, NY: 1989) 573.

[5] Robert C. Stern, Fire from the Sky: Surviving the Kamikaze Threat, Naval Institute Press (Annapolis, MD: 2010) 321.

[6] Giangreco, Hell to Pay, 182.

[7] Ibid, 118.

[8] Denis Warner and Peggy Warner, The Sacred Warriors; Japan’s Suicide Legions, Van Nostrand Reinhold Company (New York, NY: 1982) 185.

[9] Giangreco, Hell to Pay, 111.

[10] Bernard Millot, Divine Thunder:  The Life and Death of the Kamikazes, McCall Publishing (New York, NY: 1971) 206-207.

Featured Image: 40mm guns firing aboard the U.S. aircraft carrier USS Hornet (CV-12) on 16 February 1945, as the planes of Task Force 58 raid Tokyo. (Wikimedia Commons)